The Joint Annual Meeting of The Bioelectromagnetics Society and the European BioElectromagnetics Association

Technical Program and General Information
The Bioelectromagnetics Society - Officers and Board of Directors

<table>
<thead>
<tr>
<th>Role</th>
<th>Name</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>President</td>
<td>Andrew Wood</td>
<td>Australia</td>
</tr>
<tr>
<td>Treasurer</td>
<td>Myles Capstick</td>
<td>Switzerland</td>
</tr>
<tr>
<td>Secretary</td>
<td>Sarah Loughran</td>
<td>Australia</td>
</tr>
<tr>
<td>Secretary-Elect</td>
<td>Alexandre Legros</td>
<td>Canada</td>
</tr>
<tr>
<td>Board Member</td>
<td>Marthinus Van Wyk</td>
<td>South Africa</td>
</tr>
<tr>
<td>Board Member</td>
<td>Teruo Onishi</td>
<td>Japan</td>
</tr>
<tr>
<td>Board Member</td>
<td>Azadeh Peyman</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>Board Member</td>
<td>Kenichi Yamazaki</td>
<td>Japan</td>
</tr>
<tr>
<td>Editor-In-Chief (ex-officio)</td>
<td>James C. Lin</td>
<td>United States</td>
</tr>
</tbody>
</table>

European BioElectromagnetics Association Council

<table>
<thead>
<tr>
<th>Role</th>
<th>Name</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>President</td>
<td>Isabelle Lagroye</td>
<td>France</td>
</tr>
<tr>
<td>President-Elect</td>
<td>Luc Martens</td>
<td>Belgium</td>
</tr>
<tr>
<td>Executive Secretary</td>
<td>Micaela Liberti</td>
<td>Italy</td>
</tr>
<tr>
<td>Treasurer</td>
<td>Niels Kuster</td>
<td>Switzerland</td>
</tr>
<tr>
<td>Biological/Medical Sciences</td>
<td>Heidi Danker-Hopfe</td>
<td>Germany</td>
</tr>
<tr>
<td>Biological/Medical Sciences</td>
<td>Florence Pouletier De Gannes</td>
<td>France</td>
</tr>
<tr>
<td>Biological/Medical Sciences</td>
<td>Anke Huss</td>
<td>Netherlands</td>
</tr>
<tr>
<td>Engineering/Physical Sciences</td>
<td>Maxim Zhadobov</td>
<td>France</td>
</tr>
<tr>
<td>Engineering/Physical Sciences</td>
<td>Antonio Sarolic</td>
<td>Croatia</td>
</tr>
<tr>
<td>At Large</td>
<td>Wout Joseph</td>
<td>Belgium</td>
</tr>
<tr>
<td>At Large</td>
<td>Olga Zeni</td>
<td>Italy</td>
</tr>
<tr>
<td>At Large</td>
<td>Mats-Olof Mattsson</td>
<td>Austria</td>
</tr>
<tr>
<td>At Large</td>
<td>Mirjana Moser</td>
<td>Switzerland</td>
</tr>
</tbody>
</table>
From the Co-chairs of the Local Organizing Committee

The BioEM2018 Local Organizing Committee welcomes you to Piran, Portorož, Slovenia for the Joint Annual Meeting of The Bioelectromagnetics Society (BEMS) and the European BioElectromagnetics Association (EBEA).

As the premier international conference in the area of bioelectromagnetics, BioEM2018 is expected to stimulate further research in this field through the exchange of ideas and invigorating discussions, consolidating the state-of-the-art knowledge, and identifying existing gaps.

The BioEM2018 conference is held in St. Bernardin Conference Centre which is located at a tourist resort by the Adriatic Sea, within walking distance to the towns of Portorož and Piran – two beautiful towns that offer every visitor a truly authentic cultural remix influenced by the Northern Mediterranean, combining inspiring modernity and fascinating history. The St. Bernardin Conference Centre offers an exceptional venue for meetings and conferences, as well as for leisure and relaxation.

Slovenia is the first country in the world to be declared a green destination based on the Green Destinations Criteria. Situated in the heart of Europe, Slovenia is a boutique country between the Alps, Mediterranean Sea, mysterious Karst with more than 11,000 karst caves and Pannonian Plain, rich in healthy water springs. Slovenia also offers many other tourist attractions. Beautiful Ljubljana, the capital city of Slovenia, is 1 hour away by car and the famous Postojna cave, only 45 minutes away. The Lipica Stud farm, the cradle of all Lipizzaner horses in the world, is only 30 minutes away by car. Famous Venice, Italy, could be reached in only 2 hours’ drive. And for those who remember Bled which hosted the 2nd EBEA Congress in 1993, this is only 1 h 40 min drive by car.

We are very grateful for the generous support of our sponsors, listed both on the meeting website and at the end of this booklet.

We believe that this will be a fruitful scientific meeting in stimulative and relaxing environment by the Adriatic Sea shore.

We are delighted to welcome you all at BioEM2018 in Piran, Portorož, Slovenia!

Peter Gajšek, Institute of Nonionizing Radiation (INIS), LOC Chair
Damijan Miklavčič, University of Ljubljana, LOC co-Chair.
From the Co-chairs of the Technical Program Committee

Dear Colleague,

We welcome you to Piran, Portorož, Slovenia for the Joint Annual Meeting of the Bioelectromagnetics Society (BEMS) and European Bioelectromagnetics Association (EBEA), BioEM2018. The Annual Meeting provides a unique opportunity for researchers, experts, and students to meet and interact, share and discuss new research and to renew friendships with colleagues in the bioelectromagnetics field.

We want to thank you for all of the excellent proposals you submitted for the keynote lectures, the tutorials and the workshops. The TECHNICAL PROGRAM COMMITTEE (TPC) MEMBERS also provided interesting and new ideas. We selected four plenary talks with distinguished speakers, three tutorials and five workshops, two of which will take place right before BioEM2018. The plenary sessions will cover most of the key issues in bioelectromagnetics and have some of the most distinguished speakers in each area. Several emerging areas are covered including magnetoreceptor(s) cryptochromes, dielectrophoresis in biomedical applications, and molecular and cellular mechanisms defining prospective medical applications of nanosecond stimuli. The work of the International Commission of Non-Ionizing Radiation Protection (ICNIRP) on future high frequency guidelines will be presented for the first time at our annual meeting. Finally, in the 'hot topic' session on Friday, for the first time results from the international epidemiological COSMOS study on the development of non-specific symptoms in relation to mobile phone use will be presented.

To provide the scientific basis to protect the health of the population is an important objective of bioelectromagnetics research. The program puts a focus on aspects involved in preventing people from unwanted side effects of EMF. Our first tutorial will cover systematic review approaches in biomedical sciences and the third tutorial will provide us with details regarding how to design and evaluate animal cancer studies to be useful for hazard identification. In a workshop on Tuesday afternoon, various stakeholders including governmental organizations will discuss the challenge of transferring evidence from research into policy to be used by society in making decisions. We are convinced that these three sessions together with the ICNIRP plenary will contribute to a better understanding on how to best protect human health. For the public this question has recently become more fundamental with the foreseeable introduction of 5G. The pre-conference workshop on this topic will answer many open questions with respect to the rapid technological development of 5G.

In addition to harm reduction, therapeutical applications of EMF are an important field of research for the health of individuals. A pre-conference workshop will present recent research on nano-electropulse-induced electrochemical signaling and the second tutorial will address the question: what role do scientists play in the development of magnetic nanoparticles as therapeutic agents? The third workshop will deal with advanced approaches for the analysis of biological effects from pulsed electric fields whereas the second workshop will attempt to bridge the hazardous or beneficial effects of EMF.

244 ABSTRACTS FROM 36 DIFFERENT COUNTRIES all over the world were submitted. Many scientists from our community have acted as reviewers; each submitted abstract was scored by at least three referees. After selection of the accepted abstracts, the TPC assigned them into 16
oral Platform Sessions and two Poster Sessions, preceded by Flash Student Poster presentations. A strong participation of students (49 submitted abstracts) demonstrates the ability of our Societies to attract young researchers and it provides hope for a continuous renewal of our vibrant research community.

A number of people will receive awards and recognition during BioEM2018. BioEM2018 continues the tradition of the Chiabrera Lecture for Excellence in Bioelectromagnetics, an honor bestowed on an outstanding young researcher by EBEA. The prestigious d’Arsonval Award from BEMS will be presented next year to Dr. J Patrick Reilly, in recognition of his outstanding achievements in various fields of bioelectromagnetics (he was unable to attend this year’s meeting). Finally, we will end with the traditional awards for the students and the third Arthur Pilla Young Scientist Award, awarded to the best presentation by a young scientist at the annual BioEM Meeting.

This meeting would not have been possible without the contribution of many individuals. We thank the members of the TPC for their dedication to helping us design an interesting program, the referees who diligently reviewed and scored all the submitted abstracts, and Astrid Chamson-Reig and Jeff Carson (Lawson Health Research Institute in Canada) who supported us through managing the submission website and the abstract book; all of these efforts were essential to developing a successful program. Furthermore, our personal thanks go to Dr. Peter Gajšek and Professor Damijan Miklavčič and the Local Organizing Committee, to Professor Isabelle Lagroye, EBEA President, and to Professor Andrew Wood, BEMS President for their support.

On behalf of the TPC, we conclude by thanking you for your participation and support to the BioEM2018 conference and we hope that you will enjoy the meeting!

Meike Mevissen and Martin Rööśli
Co-Chairs, Technical Program Committee, BioEM2018
Schedule at a Glance

Sunday, June 24, 2018

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Name</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>09:00 - 12:30</td>
<td>M1</td>
<td>BEMS Board Meeting</td>
<td>Pharos</td>
</tr>
<tr>
<td>09:00 - 12:30</td>
<td>M2</td>
<td>EBEA Council Meeting</td>
<td>Adria</td>
</tr>
<tr>
<td>13:00 - 18:00</td>
<td>PW1</td>
<td>Pre Conference Workshop: EMF exposure from 5G equipment: the state of art of research and standardization</td>
<td>Europa C</td>
</tr>
<tr>
<td>13:00 - 16:30</td>
<td>PW2</td>
<td>Pre Conference Workshop: MURI/AFOSR Workshop on Nanoelectropulse-induced electromechanical signaling and control of biological systems</td>
<td>Europa D</td>
</tr>
<tr>
<td>18:00 - 20:00</td>
<td></td>
<td>Welcome Reception</td>
<td>Grand Garden Terrace and Cocktail Lounge</td>
</tr>
</tbody>
</table>

Monday, June 25, 2018

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Name</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>09:00 - 09:30</td>
<td></td>
<td>Welcome</td>
<td>Emerald</td>
</tr>
<tr>
<td>09:30 - 10:30</td>
<td>P1</td>
<td>Plenary 1: Effects of Static and Oscillatory Magnetic Fields on Cryptochromes: A Mechanistic Perspective</td>
<td>Emerald</td>
</tr>
<tr>
<td>10:30 - 11:00</td>
<td></td>
<td>Coffee Break</td>
<td>Foyer</td>
</tr>
<tr>
<td>11:00 - 12:30</td>
<td>S01</td>
<td>Human studies I / brain</td>
<td>Europa C</td>
</tr>
<tr>
<td>11:00 - 12:30</td>
<td>S02</td>
<td>Dosimetry I - Computational studies</td>
<td>Europa D</td>
</tr>
<tr>
<td>12:30 - 13:30</td>
<td></td>
<td>Lunch</td>
<td>Grand hotel Bernardin restaurant</td>
</tr>
<tr>
<td>13:30 - 14:30</td>
<td>FA</td>
<td>Student Flash Poster Session A</td>
<td>Emerald</td>
</tr>
<tr>
<td>14:30 - 16:00</td>
<td>PA</td>
<td>Poster Session A</td>
<td>Mediterranea</td>
</tr>
<tr>
<td>16:00 - 16:30</td>
<td></td>
<td>Coffee Break</td>
<td>Foyer</td>
</tr>
<tr>
<td>Time</td>
<td>Session</td>
<td>Name</td>
<td>Location</td>
</tr>
<tr>
<td>-----------------</td>
<td>---------</td>
<td>---</td>
<td>-------------------</td>
</tr>
<tr>
<td>08:30 - 09:30</td>
<td>T1</td>
<td>Tutorial 1: Systematic Review Approaches in Environmental Health Sciences</td>
<td>Emerald</td>
</tr>
<tr>
<td>09:30 - 10:30</td>
<td>P2</td>
<td>Plenary 2: The International Commission on Non-Ionising Radiation Protection (ICNIRP) Draft High Frequency (100 kHz – 300 GHz) Guidelines</td>
<td>Emerald</td>
</tr>
<tr>
<td>10:30 - 11:00</td>
<td></td>
<td>Coffee Break</td>
<td>Foyer</td>
</tr>
<tr>
<td>11:00 - 12:30</td>
<td>S05</td>
<td>Epidemiology</td>
<td>Europa C</td>
</tr>
<tr>
<td>11:00 - 12:30</td>
<td>S06</td>
<td>In vitro II</td>
<td>Europa D</td>
</tr>
<tr>
<td>12:30 - 13:30</td>
<td></td>
<td>Lunch</td>
<td>Grand hotel Bernardin restaurant</td>
</tr>
<tr>
<td>12:30 - 13:30</td>
<td>M3</td>
<td>EBEA Assembly</td>
<td>Europa C</td>
</tr>
<tr>
<td>13:30 - 14:30</td>
<td>FB</td>
<td>Student Flash Poster Session B</td>
<td>Emerald</td>
</tr>
<tr>
<td>14:30 - 16:00</td>
<td>PB</td>
<td>Poster Session B</td>
<td>Mediteranea</td>
</tr>
<tr>
<td>16:00 - 16:30</td>
<td></td>
<td>Coffee Break</td>
<td>Foyer</td>
</tr>
<tr>
<td>16:30 - 18:00</td>
<td>S07</td>
<td>Electroporation</td>
<td>Europa D</td>
</tr>
<tr>
<td>16:30 - 18:00</td>
<td>W1</td>
<td>Workshop 1: Transferring Evidence from Research and Case Reports into Policy and Society</td>
<td>Europa C</td>
</tr>
<tr>
<td>19:00 - 22:00</td>
<td></td>
<td>Conference Dinner</td>
<td>Emerald (with welcome drink on the beach)</td>
</tr>
</tbody>
</table>

Tuesday, June 26, 2018

Wednesday, June 27, 2018

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Name</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>09:00 - 10:00</td>
<td>T2</td>
<td>Tutorial 2: Magnetic Nanoparticles as Therapeutic Agents: Focusing on the Role of a Scientist and Engineer</td>
<td>Emerald</td>
</tr>
<tr>
<td>Time</td>
<td>Session</td>
<td>Name</td>
<td>Location</td>
</tr>
<tr>
<td>--------------</td>
<td>---------</td>
<td>--</td>
<td>------------------</td>
</tr>
<tr>
<td>10:00 - 10:30</td>
<td></td>
<td>Coffee Break</td>
<td>Foyer</td>
</tr>
<tr>
<td>10:30 - 11:30</td>
<td>P3</td>
<td>Plenary 3: Exploring Dielectrophoresis and its Applications in the Biomedical Sciences</td>
<td>Emerald</td>
</tr>
<tr>
<td>11:30 - 12:30</td>
<td>S08</td>
<td>In vivo</td>
<td>Europa C</td>
</tr>
<tr>
<td>11:30 - 12:30</td>
<td>S09</td>
<td>Mechanisms</td>
<td>Europa D</td>
</tr>
<tr>
<td>12:30 - 13:30</td>
<td></td>
<td>Lunch</td>
<td>Grand hotel Bernardin restaurant</td>
</tr>
<tr>
<td>14:00 - 22:00</td>
<td></td>
<td>Optional tour to Postojna Cave or Miramare Castle</td>
<td></td>
</tr>
</tbody>
</table>

Thursday, June 28, 2018

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Name</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:30 - 09:30</td>
<td>T3</td>
<td>Tutorial 3: Evaluation of Animal Cancer Studies (overview)</td>
<td>Emerald</td>
</tr>
<tr>
<td>09:30 - 10:30</td>
<td></td>
<td>Award session</td>
<td>Emerald</td>
</tr>
<tr>
<td>10:30 - 11:00</td>
<td></td>
<td>Coffee Break</td>
<td>Foyer</td>
</tr>
<tr>
<td>11:00 - 12:30</td>
<td>S10</td>
<td>Human studies II</td>
<td>Europa C</td>
</tr>
<tr>
<td>11:00 - 12:30</td>
<td>S11</td>
<td>Dosimetry II - Measurements</td>
<td>Europa D</td>
</tr>
<tr>
<td>12:30 - 13:30</td>
<td></td>
<td>Lunch</td>
<td>Grand hotel Bernardin restaurant</td>
</tr>
<tr>
<td>12:30 - 13:30</td>
<td>M4</td>
<td>BEMS Business</td>
<td>Europa D</td>
</tr>
<tr>
<td>13:30 - 15:00</td>
<td>S12</td>
<td>Nano pulses</td>
<td>Europa C</td>
</tr>
<tr>
<td>13:30 - 15:00</td>
<td>W2</td>
<td>Workshop 2: EMF and Cancer: Interaction Mechanisms Leading to Hazardous or Beneficial effects</td>
<td>Europa D</td>
</tr>
<tr>
<td>15:00 - 15:30</td>
<td></td>
<td>Coffee Break</td>
<td>Foyer</td>
</tr>
<tr>
<td>15:30 - 16:30</td>
<td>S13</td>
<td>Public Policy I</td>
<td>Europa C</td>
</tr>
<tr>
<td>15:30 - 18:00</td>
<td>W3</td>
<td>Workshop 3: Advanced Approaches for Analysis of Biological Effects of Pulsed Electric Fields</td>
<td>Europa D</td>
</tr>
<tr>
<td>16:30 - 18:00</td>
<td>S14</td>
<td>Dosimetry III - Measurements</td>
<td>Europa C</td>
</tr>
<tr>
<td>Time</td>
<td>Session</td>
<td>Name</td>
<td>Location</td>
</tr>
<tr>
<td>---------------</td>
<td>---------</td>
<td>---</td>
<td>------------</td>
</tr>
<tr>
<td>08:30 - 09:30</td>
<td>P4</td>
<td>Plenary 4: Frontiers of Electroporation, from</td>
<td>Emerald</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mechanisms to Applications</td>
<td></td>
</tr>
<tr>
<td>09:30 - 11:00</td>
<td>S15</td>
<td>Dosimetry IV - Computational studies</td>
<td>Europa C</td>
</tr>
<tr>
<td>09:30 - 11:00</td>
<td>S16</td>
<td>Public Policy II</td>
<td>Europa D</td>
</tr>
<tr>
<td>11:00 - 11:30</td>
<td></td>
<td>Coffee Break</td>
<td>Foyer</td>
</tr>
<tr>
<td>11:30 - 12:30</td>
<td>P5</td>
<td>Plenary 5: Hot Topic</td>
<td>Emerald</td>
</tr>
<tr>
<td>12:30 - 13:30</td>
<td></td>
<td>Student Awards</td>
<td>Emerald</td>
</tr>
<tr>
<td>13:30 - 14:00</td>
<td></td>
<td>Closing ceremony</td>
<td>Emerald</td>
</tr>
<tr>
<td>14:30 - 18:00</td>
<td>M5</td>
<td>BEMS Board Meeting</td>
<td>Pharos</td>
</tr>
<tr>
<td>14:30 - 18:00</td>
<td>M6</td>
<td>EBEA Council Meeting</td>
<td>Adria</td>
</tr>
</tbody>
</table>
General Information

THE CONFERENCE VENUE

BioEM 2018 conference will be held in the St. Bernardin Conference Centre which is located at a tourist resort by the Adriatic Sea, within walking distance to the towns of Portorož and Piran. The St Bernardin Conference Centre offers an exceptional venue for meetings and conferences, as well as for leisure and relaxation.

Portorož, a coastal town in the heart of Europe boasts a large number of comfortable hotels with modern pools, a wide range of restaurants with different varieties of cuisine, and popular events. Portorož is also a well-known convention centre.

Piran is a very special, precious city. It is the best preserved cultural monument of Slovenian Istria and its image is known all over the world. Its architecture is influenced by the former Venetian Republic, which left its mark on most Istrian towns. Throughout time, Piran has maintained the clustered medieval structure with narrow winding streets, houses huddled close together, rising in cascades, the contact with the sea, numerous squares and churches.

Portorož and Piran lie on the Slovenian coast and enjoy a climate that is quite different from other parts of Slovenia. Visitors can expect Mediterranean – style weather in summer with plenty of sunshine and high temperatures. June is mostly hot and dry with up to 11 hours of sunshine a day and the average daytime temperature around 26 °C. Even at nighttime, temperatures usually remain around a comfortable 20 °C, making it possible to enjoy dining outside in the evening. However, the odd thunderstorm can sometimes break up the sunshine during the summer.

REGISTRATION AND INFORMATION DESK

When you enter the conference venue through the main entrance, Grand Hotel Bernardin, the Registration and Information Desk will be located to the right – just accross the reception desk of the hotel.

On Sunday, June 24th, the Registration Desk will be open from 3 p.m.

From Monday, June 25th till Friday, June 30th, the Registration Desk will be open from 8 a.m. until the end of the last meeting session of each day.

CONFERENCE BADGE

Badges must be worn at all times during the meeting and during all social events (registered guests as well). Please present a printed version of your ticket (sent to you upon registration) at the Registration Desk to receive your badge and conference bag.

CONFERENCE LUNCH AND COFFEE BREAKS

A buffet lunch will be provided on Monday, June 25th, on Tuesday, June 26th, on Wednesday, June 27th, and on Thursday, June 28th in the Grand Hotel Bernardin Restaurant on 10th Floor.

Coffee breaks will take place in front of EMERALD hall.

SOCIAL EVENTS

1. WELCOME RECEPTION, Sunday 24.6.2018

Sunday, June 24th, 6:00 p.m. at the conference venue (Grand Garden Terrace and Cocktail Lounge on 11th Floor of the Grand Hotel Bernardin). Expected end time: approximately 9:00 p.m.
2. GUIDED WALKING TOUR TO PIRAN, Monday 25.6.2018

The meeting point for Guided walking tour of Piran will be on Monday, 25th June at 6:30 p.m. at the lower entrance to Grand hotel Bernardin by the hotel's lido (ground floor by the elevator) — comfortable walking shoes are recommended!

Piran is at approx. 10 minutes walking distance from Grand Hotel Bernardin (Congress venue).

Please join us Tuesday, 26.6.2018, 7.30 p.m. for Conference dinner.

The welcome drinks will be served on the beach in the front of the Grand Bernardin Hotel, starting at 7.30 p.m. After some refreshments all the participants will be transfered to the Emerald hall where dinner will be served. Have dancing shoes ready!

4. Optional tour to Postojna Cave or Miramare Castle, Wednesday 27.6.2018

The LOC recommends some social events to some places with special attractions in Slovenia and its surroundings. In collaboration with Unitours travel agency we have prepared some unique tours specifically for the BIOEM 2018 participants.

The most visited tourist cave in Europe is a place where the proteus or olm offspring are once again hatching. The cave railway has been operating at the cave for 140 years.

Postojna Cave is the only karst cave with a cave railway. For 140 years it has been taking visitors to see stalactites and stalagmites and other features created by water.

Castle Miramare is surrounded by a flourishing park full of precious botanic species, and has a charming panoramic view, given its location on a cliff high above the sea. It stands on the peak of the rocky promontory of Grignanano in the Gulf of Trieste, and is about 10 km from the city itself. Commissioned in the second half of the 19th century by the Archduke Ferdinand Maximilian of Hapsburg as a residence, the castle today’s visitors view an example of a luxurious aristocratic residence which has preserved its original furnishings.

ORAL AND POSTER PRESENTATION GUIDELINES

Please find below some potentially useful material to assist you in preparing a presentation for BioEM2018.

Papers are to be presented in two basic formats: Oral and Poster Presentations. Below you will find specific information concerning these two formats.

If for any reason you find yourself unable to personally present your paper, please try to arrange for someone else to present it. If nobody is available to present your work, you must notify the TPC Chairs well ahead of time (at tpc@bioem.org). If the presentation does not take place, without having previously notified the TPC, the corresponding abstract will be removed from the online abstract book.

NO PHOTOS ARE ALLOWED DURING THESE PRESENTATIONS

Oral Presentations

All oral presentations have been allocated a 15-minute time slot. These 15-minutes must include the presentation, questions, and transitioning to the next speaker. It is recommended that speakers plan on an 11 minute presentation to allow for questions and discussion (4 minutes). It is important to strictly adhere to this schedule as most oral presentations are scheduled in
parallel sessions. Arrive at least 10 minutes early prior to the start of the session and introduce yourself to the chair and familiarize yourself with the audio-visual equipment.

Each meeting room will be equipped with a personal computer to accommodate PowerPoint and PDF presentation formats. Technical support will be present in each meeting room to ensure flawless execution. Authors must upload their presentations onto the designated computer at the conference venue during the break before their session. Presenters will not be allowed to connect their own computer to the projection system. Presentations can be loaded via USB flash memory stick. Authors are urged to try to minimise any potential problems by taking advantage of redundancy whenever possible: save and bring presentations in multiple formats (PowerPoint and Adobe PDF), store presentations in more than one media, and keep the media on your person during travel.

The best student oral presentation(s) will be awarded.

Important information regarding a presentation upload system

All oral presenters are expected to support their presentation with a corresponding slideshow. The slides should be prepared in either PowerPoint (PPT/PPTX) or PDF format to ensure maximum compatibility with the equipment available on-site. Videos should either be embedded into the slides, or, if linked, physically accompany the main presentation document.

There will be a central upload system used for the BioEM conference, whereby from at least one week prior to the beginning of the conference and up to the very end of the last day of oral sessions, it will be possible and much desirable to upload the slides and accompanying material using a centralised online system accessible from the Internet.

In order to access the system, co-authors of submitted abstracts will receive a personalised link to the upload system (keep an eye out for such an email in the days leading up to the conference!). Authors on co-authored papers will be accessing the same repository, so it is the co-authors' responsibility to designate the presenting author who will be uploading hers or his presentation.

The email containing the access link will also come with a PDF of complete instructions on step-by-step use of the system.

Presenters are strongly encouraged to visit the Preview Room (Pharos hall) from Sunday 1 p.m. onward and throughout the duration of the conference either in order to

- Verify that their presentation materials uploaded via the Internet display properly on the on-site equipment;
- Seek assistance from a qualified technician present in the Preview Room in order to upload the presentation materials in the eventuality they will not succeed to take care of it over the Internet.

Any questions and inquiries as to the use of the system should be addressed to the contact listed in the Invitation to upload email.

Student Poster Presentations with Flash Presentation

Poster sessions are an important part of the BioEM2018 conference and a method for immediate and effective communication between all those interested in specific subjects, actions or programs. Posters should be carefully designed and prepared to ensure their full impact.

The poster presenters are kindly requested to follow the instructions below:

- Two poster sessions, i.e., A on Monday, June 25 at 2:30 PM, and B on Tuesday, June 26 at 2:30 PM, are planned.
- All student posters will also be presented as poster flash presentation. The two poster flash sessions will take place on Monday, June 25 in meeting room Emerald from
Please ensure that you plan your communication carefully. The language is English.

Each presenter will have **3 minutes** time to present **4 slides maximum** for the flash presentation (discussions will follow afterwards at your poster). Please introduce yourself in the beginning of your presentation and point out the main findings of your work. Hence your presentation should not include new material that is not shown on your poster.

- The Chairs will call up the next presenter after the 3 min are over and you have to leave the podium.
- Please upload your presentation at the computer available in the **Pharos hall** on Monday, June 25 before 12:30 PM for the FA session, and on Tuesday June 26 before 12:30 PM for the FB session either in PowerPoint (.pptx) or PDF format, since all flash poster presentations will be uploaded beforehand on the same computer. The presenters will not be allowed to use their USB memory sticks or laptops during the session.

The best student poster(s) will be awarded.

Important information regarding a presentation upload system

Authors and Co-authors on those posters who have been selected for a Poster Flash Presentation, will also receive an email invitation to upload their flash presentation of 3 minutes using the online upload system in advance or during the Conference.

Please see the text above under Oral Presentations for more details on the upload system.

Poster Presentations

The poster presentations will be held in room Mediterranea.

Poster format and dimensions

The poster display panels that will be available for poster presentations at the Congress measure 1000 × 2000 mm, width by height, however not all of this area is available for your poster(s). The maximum size, as well as the recommended size/format, are therefore given below. Please consider using the recommended format, although you are free to choose any size up to the maximum size. But in any case your poster must adhere to portrait orientation.

Recommended format

Size: 841 × 1189 mm, width × height (A0 according to ISO 216)
Orientation: Portrait

Maximum dimensions format

Size: 900 × 1700 mm, width × height (custom)
Orientation: Portrait

Authors should be present at their stations for the duration of their assigned session to discuss their work and answer questions, as there will be a flux of attendees.

Mounting: Posters can be mounted anytime beginning on Sunday 1:00 p.m.
There will be help on Sunday afternoon and material ready for mounting.

Removal: Posters must be removed no later than Wednesday 6:00 p.m.
Posters that are left behind and remain mounted on Wednesday evening will not be returned to their authors, but will be disposed of.
CONFERENCE ORGANIZERS

Conference Organizing and Service, Events Planning, Registration and Accommodation Arrangement, Meeting Website Maintenance

Institute of Nonionizing Radiation

Peter Gajšek, LOC Chair
Blaž Valič, LOC member
Pohorskega bataljona 215
1000 Ljubljana,
SLOVENIA

Peter.Gajsek@inis.si
www.inis.si

Faculty of Electrical Engineering, University of Ljubljana

Damijan Miklavčič, LOC co-Chair
Bor Kos, LOC member
Tržaška cesta 25
1000 Ljubljana,
SLOVENIA

Damijan.Miklavcic@fe.uni-lj.si
http://lbk.fe.uni-lj.si/

Lawson Health Research Institute

Website and Meeting Support

Abstract submission, abstract review and assignment, email campaigns, program and abstract books, student award judging, and meeting survey

Jeffrey Carson
Astrid Chamson-Reig

Lawson Health Research Institute
268 Grosvenor Street
London, Ontario,
Canada, N6A-4V2
office@bems.org
office@bioem.org
Technical Program

Sunday June 24, 2018

Session: M1
BEMS Board Meeting
Sunday June 24, 2018 • 09:00 - 12:30
Pharos

Session: M2
EBEA Council Meeting
Sunday June 24, 2018 • 09:00 - 12:30
Adria

Session: PW1
Pre Conference Workshop: EMF exposure from 5G equipment: the state of art of research and standardization
Sunday June 24, 2018 • 13:00 - 18:00
Europa C
Chair: Ken Joyner

PW1-1 [13:00]
Workshop content
Ken Joyner1
1Australia

Although networks utilizing frequency bands below 6 GHz will still constitute the backbone of mobile communications, new wireless access technologies, such as 5G, will operate also in higher bands. This workshop will present the increasing amount of studies addressing millimeter wave EMF exposure. It will also discuss novel compliance assessment methodologies and procedures that have been developed and are being standardized for both base stations and portable devices.

PW1-2 [13:05]
Overview of 5G and the EMF Compliance Standards Development program from the International Electrotechnical Commission
Michael Wood1
1Chairman IEC TC106 and Telstra Corporation, Melbourne, Australia

PW1-3 [13:30]
EMF Exposure limits above 6 GHz
Akimasa Hirata1
1Nagoya Institute of Technology, Nagoya, Japan

PW1-4 [14:00]
EMF exposure of the skin at the mmW
C. K. Chou1
1IEEE/ICES TC95 Chairman, USA

PW1-5 [14:30]
Ocular studies of EMF exposure at the mmW
Masami Kojima1 & Yaeko Suzuki2
1Kanazawa Medical University, Uchinada, Japan
2Tokyo Metropolitan University, Hachioji, Japan
On the averaging time of human exposure at frequencies above 6 GHz
Kenneth Foster
1University of Pennsylvania, Pennsylvania, PA, USA

In vivo experimental measurements of thermal change due to mmW exposure
Leeor Alon
1New York University School of Medicine, New York, NY, USA

EMF energy absorption mechanisms at the mmW
Andreas Christ
1Research Consultant, Cabo Frio, Brazil

Challenges in standardization related to EMF compliance above 6 GHz
Davide Colombi
1Ericsson Research, Stockholm, Sweden

EMF compliance assessments of 5G devices
Niels Kuster
1IT’IS Foundation, Zurich, Switzerland

EMF compliance assessment based on a mixed approach of measurements and numerical simulations
Wassim El Hajj
1Intel Corporation, Nice, France
PW2-1 [13:00]

Workshop content
Andrei Pakhomov

Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA

Multidisciplinary University Research Initiative (MURI) grants are awarded by the US Air Force Office of Scientific Research (AFOSR) to support fundamental, cutting-edge research that crosses traditional science and engineering boundaries. This Workshop will focus on cellular and molecular mechanisms underlying bioeffects of nanosecond pulsed electric fields (nsPEF). Talks will highlight the impact of bipolar cancellation, a phenomenon which makes bipolar stimuli and emitted EMF less effective. We will summarize experimental and modeling efforts in support of a concept of remote stimulation and electroporation by “cancellation of cancellation” (CANCAN). We will conclude with a first-time introduction and discussion of a synthetic theory which links nanoelectroporation and bipolar cancellation mechanisms.

The workshop welcomes all BioEM participants and does not require registration.

PW2-2 [13:00]

Universality of bipolar cancellation of nanoelectropulse bioeffects
Andrei Pakhomov

Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA

PW2-3 [13:25]

Direct observation of membrane charging during uni- and bipolar nanosecond pulse exposure
Bennett Ibey

Air Force Research Laboratory, 711th Human Performance Wing, Airman Systems Directorate, Bioeffects Division, Radio Frequency Bioeffects Branch, Fort Sam Houston, TX, USA

PW2-4 [13:50]

Bipolar, bidirectional cancellation of electrostimulated molecular transport — Nanoscale and microscale models and measurements
P. Thomas Vernier

Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA

PW2-5 [14:15]

Break

PW2-6 [14:25]

Nanopore behavior during and after pulsing: General and bipolar cancellation implications
James Weaver

Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Boston, MA, USA
PW2-7 [14:45]

Activation of voltage-gated calcium channels by uni- and bipolar nsPEF
Olga Pakhomova
\(^1\)
\(^1\)Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA

PW2-8 [15:10]

Cancellation of Ca\(^{2+}\) signaling by bipolar nsPEF in neural crest-derived bovine adrenal chromaffin cells – Pulse duration is critical!
Normand Leblanc
\(^1\)
\(^1\)Center for Cardiovascular Research, University of Nevada, Reno School of Medicine, Reno, NV, USA

PW2-9 [15:35]

Break

PW2-10 [15:45]

Open discussion: Synthetic theory of nanoporation and bipolar cancellation
Andrei Pakhomov\(^1\) & Bennett Ibey\(^2\)
\(^1\)Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA
\(^2\)Air Force Research Laboratory, 711th Human Performance Wing, Airman Systems Directorate, Bioeffects Division, Radio Frequency Bioeffects Branch, Fort Sam Houston, TX, USA

Welcome Reception
Sunday June 24, 2018 • 18:00 - 20:00
Grand Garden Terrace and Cocktail Lounge
Cryptochrome-based magnetoreception and the effects of RF-fields on animal orientation
Rachel Muheim

Biographical sketch
Rachel Muheim is a researcher at Lund University, Sweden, and part of the Lund Vision Group and the Center for Animal Movement Research, CAnMove. Her research focuses on the behavioural and physiological characterization of the light-dependent magnetic compass and polarized light sensitivity in birds, and on stopover behaviour and the use of different orientation cues in migratory birds. Rachel Muheim received a Master's degree in Zoology from the University of Zürich, Switzerland, and a PhD on magnetic orientation in migratory birds from Lund University. She worked four years as postdoc in the lab of Prof. John Phillips at Virginia Tech, USA, investigating magnetic compass orientation in a variety of organisms, including newts and mice. Upon her return to Lund in 2008, she developed a novel behavioural training assay to study magnetic compass orientation in birds in a non-migratory context. The objectives of her work are to combine the new possibilities that have opened up with this new behavioural approach with the latest molecular genetic, neuroanatomical, and biophysical tools. The goal is to unravel the behavioural, physiological and molecular mechanisms of light-dependent magnetic compass orientation and polarized light sensitivity in birds, identify and describe the interactions between these two sensory cues, and study how birds use the information for orientation during migration and in other spatial orientation tasks.

Five relevant publications

Abstract
A wide range of animals can sense the Earth’s magnetic field, and there is growing evidence that this is an omnipresent capability of the majority of organisms and thought to play a fundamental role for animals to orient in space in everyday life. Birds and other animals have a light-dependent
magnetic compass, which operates well under UV to green wavelengths, but leads to disorientation or changed orientation at longer wavelengths. This magnetic compass is suggested to be based on a light-dependent process taking place in specialized photopigments, which upon light excitation form radical pairs whose spin states, and thereby the photopigments’ response to light, can be affected by an earth-strength magnetic field. Such magnetosensitive photopigments arranged in an ordered array, like the avian retina, would show increased or decreased sensitivity to light, depending on their alignment to the magnetic field. Cryptochromes are the only known animal photopigments that can form persistent, spin-correlated radical pairs upon light excitation and have therefore been suggested to act as the receptor molecules in such a radical-pair-based magnetoreceptor. They have been shown to be expressed in the retinas of various birds, although their exact location is still a matter of debate.

In my talk I will first give an overview of the behavioural, physiological and anatomical evidence for such a cryptochrome- and radical-pair-based magnetic compass in various animals. I will then discuss recent findings from my lab showing that the magnetic compass of zebra finches depends not only on the wavelengths, but also on the polarization of light. I will further show that magnetic compass orientation is affected by low-intensity, oscillating radio-frequency (RF fields at 0.1-10 MHz; <1 μT) electromagnetic fields, which are believed to influence the interconversion between the excited states of the radical pairs, and thereby alter or eliminate the effects produced by the Earth's magnetic field. I will conclude by presenting and discussing the consequences of novel findings on the temporal expression, distribution, and cellular localization of different cryptochromes in the retinas of zebra finches.

P1-2 [10:00]

Cryptochrome and mechanisms related to RF and ELF magnetic fields
Daniel R. Kattnig

1Living Systems Institute and Department of Physics, University of Exeter, Exeter, UK, EX4 4QD

Biographical sketch
Daniel Kattnig is a Senior Lecturer at the recently established cross-disciplinary Living Systems Institute at the University of Exeter. His current research activity is in the field of quantum biology or, more precisely, theoretical and experimental spin chemistry, an interdisciplinary field dedicated to the effects of weak magnetic fields on chemical reactions and biological processes. The theoretical modelling of avian magnetoreception, which has been hypothesised to rely on quantum phenomena involving transient radical pairs, is at the heart of his current research endeavours. Daniel completed his PhD in Physical Chemistry at the University of Technology Graz, Austria, on studies of photo-induced electron transfer phenomena (Prof. Grampp). It is during this period that he first delved into the study of magnetic field effects on charge recombination reactions. Following a short period in industrial research, Daniel joined the Max Planck Institute for Polymer Research, Mainz, Germany, where he focused on the investigation of soft matter by means of pulsed electron paramagnetic resonance (Prof. Spiess). Returning to Graz, he took on a research position dedicated to magnetic field effects on donor acceptor systems, which he held until 2013 when he joined the group of Prof. Hore at the University of Oxford. In 2017 Daniel eventually moved to the Living Systems institute at Exeter, where he is setting up a group dedicated to the theoretical and experimental investigation of magnetic field effects.

Five relevant publications
4. Kattnig, D. R.; Sowa, J. K.; Solov’yov, I. A.; Hore, P. J., Electron spin relaxation can enhance the

Abstract
The rates and yields of radical pair reactions are often sensitive to weak magnetic fields comparable to, or even weaker than, the geomagnetic field (approximately 50 µT). This trait is truly remarkable, because the interaction energies arising from such weak magnetic fields amount to only a tiny fraction of the thermal energy per molecule. The underlying mechanism, the so-called radical pair mechanism (RPM), is of fundamentally quantum-mechanical origin. It has been suggested that migratory birds, among other species, can sense the Earth’s magnetic field by means of the RPM dictating the fate of photochemically-formed radical pairs in cryptochrome proteins located in their retinas. Experimental and theoretical support for a radical pair mechanism of compass magnetoreception is accumulating although it is not yet clear whether cryptochrome is actually the sensor. The RPM has also been implicated in the context of possibly adverse effects of weak magnetic fields on human health. The underlying mechanisms are poorly understood, and currently the subject of extensive research. It is, however, hypothesised that the alteration of radical pair recombination rates, due to applied magnetic fields, may interfere with circadian rhythms or cause an increase in free radical concentrations thereby boosting oxidative stress, genotoxic effects and apoptosis.

In this talk, I will give a short introduction to the foundations of the radical pair mechanism. Thereafter I will focus on our recent results in the field: I will describe how, under conditions of continuous excitation, magnetic field effects can be amplified by slow termination reactions of the radical intermediates. Realistic biological environments are turbulent, and the interactions of such environments with the spin systems under considerations give rise to dephasing. With this in mind, I shall discuss the surprising result that certain spin relaxation mechanisms can significantly enhance the anisotropy of magnetic field effects. I will continue by elaborating on the recent hypothesis that three-radical systems can exhibit magnetic field effects vastly exceeding those predicted by the classical RPM. This effect could also provide a new perspective for our understanding of the putative effects of electromagnetic fields on (human) biology.
Temperature elevation is suggested to be a dominant effect for exposure at frequencies higher than 100 kHz. No previous studies have evaluated temperature elevation in the human head for local exposure considering thermoregulation. This study aims to discuss the temperature elevation in a human head model considering vasodilation, to discuss the conservativeness of the current limit for protection against localized radio frequency field exposure.

S01-2 [11:15]
The effect of RF-EMF exposure on the waking EEG: A comparison of effects across eyes open and eyes closed resting EEG derivations
Anna Dalecki1, 2, 3, Sarah Loughran1, 2, 4, Adam Verrender1, 2, 4 & Rodney Croft1, 2, 3, 4
1School of Psychology, University of Wollongong, Wollongong, Australia, 2522
2Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia, 2522
3Population Health Research of Electromagnetic Energy, Monash University, Melbourne, Australia
4Australian Centre for Electromagnetic Bioeffects Research, University of Wollongong, Wollongong, Australia, 2522
Keywords: Human, RF/Microwaves, Work in Progress
Presented by: Anna Dalecki

Incident power density is used as a metric to protect human from excessive heating from electromagnetic field exposures at the frequency bands assigned to the 5th generation wireless system (5G). As presented in GLORE meeting (Washington DC, Dec 2017), one of the possibilities is the transmitted power density averaged over an area as an alternative at higher frequencies to correlate with peak temperature elevation. In this study, we investigated the beam direction and the distance dependence of the relationship between transmitted power density and the skin temperature elevation from patch antenna arrays.

S02-2 [11:15]
STUDENT PAPER
Relationship between transmitted power density and skin temperature elevation for different beam directions from patch antenna arrays at the frequency bands above 10 GHz
Daisuke Funahashi1, Takahiro Ito1, Akimasa Hirata1, Takahiro Iyama2 & Teruo Onishi2
1Electrical and Mechanical Engineering, Nagoya, Japan, 466-8555
2Research Laboratories, NTT DOCOMO, INC, Kanagawa, Japan, 239-8536
Keywords: Dosimetry (computational), RF/Microwaves, Work in Progress
Presented by: Daisuke Funahashi
S01-3 [11:30]

Are there differences in possible effects of RF-EMF exposure on the macro- and microstructure of sleep between healthy young men (18-30 years) and healthy elderly women (60-80 years)?

Heidi Danker-Hopfe¹, Torsten Eggert¹, Gernot Schmid², Cornelia Sauter¹ & Hans Dorn¹

¹Competence Center of Sleep Medicine, Charité - University Medicine Berlin, Berlin, Germany, 12200
²Seibersdorf Laboratories, Seibersdorf, Austria, 2444

Keywords: Human, RF/Microwaves, Completed (unpublished)

Presented by: Heidi Danker-Hopfe

The study aims to analyse possible differences in RF-EMF effects on the macrostructure and the microstructure of sleep between healthy young men and healthy elderly women. The results indicate differences in effects of GSM 900 and TETRA exposure in healthy young men (18-30 years) and healthy elderly women (60-80 years). However, the results observed so far are not indicative of a disturbed sleep under RF-EMF exposure.

S01-4 [11:45]

STUDENT PAPER

Frequency specific magnetophosphene thresholds in humans exposed to ELF magnetic fields

Cadence Baker¹, ², Michael Corbacio¹, Sebastien Villard¹, ⁴, Daniel Goulet⁵, Michel Plante⁵, Martine Souques⁶, François Deschamps⁷, Genevieve Ostiguy⁵, Jacques Lambroz⁶ & Alexandre Legros¹, ², ₃, ⁴, ⁸

¹Bioelectromagnetics and Human Threshold Research Group, Lawson Health Research Institute, London, ON, Canada
²School of Kinesiology, Western University, London, ON, Canada
³Department of Medical Imaging, Western University, London, ON, Canada
⁴Department of Medical Biophysics, Western University, London, ON, Canada
⁵Hydro Quebec, Montreal, QC, Canada
⁶Service des études médicales, EDF, Paris, France
⁷Service des études médicales, EDF, Paris, France
⁸EuroMov, University of Montpellier, Montpellier, France

Keywords: Human, ELF/LF, Work in Progress

Presented by: Cadence Baker

Although magnetophosphene perception is the

S02-3 [11:30]

Human modeling by template based registration for evaluating the RF EMF exposure

Congsheng Li¹, Xiaobang Sun² & Tongning Wu¹

¹BEMS, CAICT, Beijing, China, 100191
²biomedical engineering, Dalian university of technology, Dalian, China, 100191

Keywords: Dosimetry (computational), RF/Microwaves, Completed (unpublished)

Presented by: Tongning Wu

In the paper, we proposed a method to reconstruct the individualized human model with high efficiency, which were based on template based registration. The torso template was constructed using statistical shape model with computerized tomography (CT) images of 79 healthy Chinese subjects. The numerical studies demonstrated that the model generated by template based registration had very few difference in terms of whole body averaged specific absorption rate and the power absorption in the major tissue layers, compared with the manually segmented model.

S02-4 [11:45]

SAR values in children and adults for real exposures

Blaž Valič¹, Bor Kos² & Peter Gajšek¹

¹Institute of Non-ionizing radiation, Ljubljana, Slovenia, 1000
²Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia, 1000

Keywords: Dosimetry (computational), RF/Microwaves, Completed (unpublished)

Presented by: Blaž Valič

Based on the personal measurements of radiofrequency electric fields in Slovenia we determined the mean exposure of the children and adults. Results show that the most important frequency bands are FM, 900 MHz, 1800 MHz and 2100 MHz. Based on these mean values SAR values were calculated for child and adult human model. Whole body SAR values are very low for mean exposures, but the exposure of the child model is significantly higher compared to the adult model.
most reliably reported effect of exposure to extremely low frequency (ELF) magnetic fields (MF), its frequency dependence needs to be further documented as an indirect clue of the underlying mechanism. Ten healthy volunteers (60 planned) were exposed to MFs from 20-300 Hz, with a flux density up to 80 mT. Phosphenes perception thresholds were reported and electroencephalography (EEG) was recorded. Establishing a reliable magnetophosphene threshold frequency-response curve will allow further understand of the mechanisms involved and will be of instrumental importance for ELF exposure recommendations.

S01-5 [12:00]
STUDENT PAPER
Frequency-dependent and montage-based differences in phosphene perception thresholds via tACS
Ian Evans, Stephen Palmisano, Sarah Loughran, Alexandre Legros & Rodney Croft
1School of Psychology, University of Wollongong, Wollongong, Australia, 2522
2Illawarra Health & Medical Research Institute, University of Wollongong, Wollongong, Australia, 2522
3Australian Centre for Electromagnetic Bioeffects Research, Wollongong, Australia
4Centre for Population Health Research on Electromagnetic Energy, Monash University, Melbourne, Australia
5Lawson Health Research Institute, Western University, Ontario, Canada
Keywords: Human, ELF/LF, Work in Progress
Presented by: Ian Evans

This study compared the thresholds for tACS-induced phosphene perception at fifteen frequencies (2-30 Hz) when applied to either an FPz-Cz montage or an Oz-Cz montage. All combinations of montages and frequencies were tested on the same population (n = 14, 24 upon completion of the study). Repeated measures ANOVAs revealed consistently lower thresholds for the FPz-Cz montage compared to the Oz-Cz montage, and differences in thresholds across frequencies. The lowest stimulation levels required to induce phosphenes was found to occur at a frequency of 16 Hz regardless of montage.

S02-5 [12:00]
Assessment of RF-EMF exposure in LTE heterogeneous networks for VoLTE and data services
Yuanyuan Huang & Joe Wiart
1LTCI, Telecom ParisTech, Paris, France, 75013
Keywords: Dosimetry (computational), RF/Microwaves, Work in Progress
Presented by: Yuanyuan Huang

LTE is deployed worldwide with macro- and small cells to fulfill different requirements motivated by numerous mobile services: VoLTE and other data applications. However, the actual human exposure to electromagnetic field from such networks from base station to user equipment is still unknown, hence, needs to be communicated. To do so, people’s live traffic usage has to be characterized. This study aims to investigate the realistic LTE-induced exposure, considering both the uplink and downlink radio emissions and various factors, such as traffic variation over a day, cells of different sizes referred to macro- and small cells, different services such as VoLTE and data and different environments respectively, in indoor and outdoor areas.
Reconstruction of brain networks involved in magnetophosphene perception using dense electroencephalography

Julien Modolo¹,², Mahmoud Hassan¹ & Alexandre Legros², ³, ⁴, ⁵

¹Univ Rennes, INSERM, LTSI – U1099, F-35000 Rennes, Rennes, France
²Human Threshold Research Group, Lawson Health Research Institute, London, ON, Canada
³Departments of Medical Biophysics and Medical Imaging, Western University, London, ON, Canada
⁴School of Kinesiology, Western University, London, ON, Canada
⁵EuroMouv, Université de Montpellier, France, France

Keywords: Human, ELF/LF, Completed (unpublished)
Presented by: Julien Modolo

METHODS: Dense electroencephalography (EEG, 128 channels) was performed in N=3 volunteers during high-level (50 mT) magnetic field (MF) exposure. Functional brain networks were reconstructed, at the cortical level from scalp recordings, using the EEG source connectivity method.

RESULTS: Magnetophosphene perception appears to consistently activate the right inferior occipito-temporal pathway.

CONCLUSIONS: This study provides the very first neuroimaging results characterizing magnetophosphene perception in humans. The use of dense-EEG source connectivity is a promising approach in the field of bioelectromagnetics.
FA-1 [13:30]
STUDENT PAPER

Extremely low frequency-electromagnetic radiation deteriorated the sleep reduction in Drosophila melanogaster under heat stress
Xiaomei Huang1, 2, Ziyan Zhang1, Hongying Zhang1, 2, Chuanjun Yang1, Yongyan Sun1, 2, Chao Tang1 & Hui Yu1
1Key Laboratory of Urban Environment and Health, Institute of Urban Environment (IUE), Xiamen, China, 361021
2Chinese Academy of Sciences, Beijing, China, 100049
Keywords: Behavioural, ELF/LF, Completed (unpublished)
Presented by: Xiaomei Huang

The coupling effects of heat stress and extremely low frequency-electromagnetic field (ELF-EMF, 50 Hz, 3 mT) on sleep and activity were studied using Drosophila (wild-type Canton-Special (CS) and mutant W1118 flies) as a model. The mRNA expressions of circadian clock genes, neurotransmitters related genes, as well as important neurotransmitters were analyzed. Result showed that ELF-EMF deteriorated the sleep reduction in Drosophila under heat stress.

FA-2 [13:33]
STUDENT PAPER

Numerical determination of the risk of cardiac ventricular fibrillation in humans from body currents with frequencies up to 1 MHz using outcomes of animal studies
Pia Schneeweiss1, Tobias Theiler1, Kai Jagielski1 & Dominik Stunder1
1Research Center for Bioelectromagnetic Interaction (femu), RWTH Aachen University, Aachen, Germany, 52074
Keywords: Dosimetry (computational), All Frequencies, Work in Progress
Presented by: Pia Schneeweiss

Cardiac ventricular fibrillation (CVF) is a potential cause of death following electrical accidents occurring when the electrical activity of the heart is disrupted. In order to determine thresholds for CVF, cadaver and animal studies were carried out in the past, which are however limited e.g. in tissue’s electric properties and the utilized probes properties. Currently executed simulations with high resolution anatomical body models traversed by body currents with frequencies up to 1 MHz will be used for the derivation of CVF thresholds and can therefore help to prevent injuries caused by electrical currents in the future.

FA-3 [13:36]
STUDENT PAPER

Industrial indoor massive MIMO human EM-exposure evaluation
Sergei Shikhantsov1, Arno Thielens1-2, Gunter Vermeeren1, Emmeric Tanghe1, Piet Demeester1, Guy Torfs1, Luc Martens1 & Wout Joseph1
1Department of Information Technology, Ghent University/IMEC, Ghent, Belgium, 9000
2Department of Electrical Engineering and Computer Sciences, University of California Berkeley, Berkeley, CA, USA, 94704
Keywords: Dosimetry (computational), RF/Microwaves, Work in Progress
Presented by: Sergei Shikhantsov

We present a numerical method of estimating human exposure to the electromagnetic fields (EMF)
of a massive MIMO base station (BS) in an industrial indoor environment e.g., an assembly line or a warehouse. The method relies on a massive MIMO channel model derived from ray-tracing simulations with stochastically generated environments. Incoming rays at the receiver location are used as the input for Finite-Difference Time-Domain plane-wave simulations with a realistic human phantom to obtain EM-exposure estimate.

FA-4 [13:39]
STUDENT PAPER
MRI patient exposure - characterization and sequence-comparisons
Jennifer Frankel¹, Kjell Hansson Mild¹ & Jonna Wilen¹
¹Department of Radiation Sciences, Umeå University, Umeå, Sweden, 90187
Keywords: Dosimetry (measurements), ELF/LF, Completed (unpublished)
Presented by: Jennifer Frankel

The unique mixture and intensity of magnetic fields experienced by the patient during an MRI exam are quite complex from an exposure perspective. We measured the RF- and gradient magnetic fields inside a 3T MRI scanner and extracted several exposure parameters to give a comprehensive description of the exposure of each sequence. We found significant differences between sequences for each of the exposure parameters studied. We also found within-sequence variation. This means that MRI exposure is not only sequence-specific but also specific to the individual patient and exam occurrence, a complexity which must be kept in mind when performing exposure assessment for epidemiological studies on MRI.

FA-5 [13:42]
STUDENT PAPER
Measurement and health assessment of electromagnetic fields by electric vehicles during road traffic operation using driving characteristics
Kai Jagielski¹, Pia Schneeweiss¹, Dominik Stunder¹ & Thomas Kraus¹
¹Research Center for Bioelectromagnetic Interaction (femu), RWTH Aachen University, Aachen, Germany, 52074
Keywords: Dosimetry (measurements), Pulsed, Work in Progress
Presented by: Kai Jagielski

This contribution introduces a measurement system which enables magnetic field measurements in the frequency range between 1 Hz and 400 kHz on electric vehicles during vehicle operation. The additional recording of the driving style, with acceleration sensor, gyroscope and GPS module, allows a detailed investigation of the influence of various vehicle components on the magnetic field spectrum. First measurement results of electric cars and the evaluation possibilities are presented. In future, measurements will be carried out for example at wireless charging systems or electric buses.

FA-6 [13:45]
STUDENT PAPER
Enhancement of in vitro gene electrotransfer using gold nanoparticles
Tjasa Potocnik¹, Tina Batista Napotnik¹, Tamara Pezić¹, Matej Reberšek¹ & Damijan Miklavčič¹
¹University of Ljubljana, Faculty of Electrical Engineering, Ljubljana, Slovenia, 1000
Keywords: Electroporation, Pulsed, Work in Progress
Presented by: Tjaša Potočnik

Gold nanoparticles when added to cell suspension prior to electroporation significantly increased transfection rate using monopolar pulses in vitro. When bipolar pulses were used for gene electrotransfer, the presence of gold nanoparticles had no effect on transfection rate. Our results show the possibility of providing sufficient transfection rate with lower voltage applied to cells in presence of gold nanoparticles.
FA-7 [13:48]
STUDENT PAPER
Repeated long term exposure of Mesenchymal Stem Cells to electric fields using a new pulse generator
Shirmone Botha1, Borja Lopez2, Óscar Lucía2, Héctor Sarnago2, Alejandro Naval2, José-Miguel Burdio2, Adeline Muscat1, Tomás García-Sánchez1, Franck Andre1 & Lluis M. Mir1
1Laboratory of Vectorology and Anticancerous Therapeutics UMR8203, Institut Gustave Roussy, Paris, France, 94805
2Department of Electronic Engineering and Communications, University of Zaragoza, Zaragoza, Spain, 50018
Keywords: Human, Pulsed, Work in Progress
Presented by: Shirmone Botha
In mesenchymal stem cells (MSCs), numerous studies describe the spontaneous oscillations of cytosolic calcium at various concentrations. We demonstrate that the application of one high voltage micro second pulse disrupts natural calcium oscillations making it possible to insert an additional synthetic calcium oscillation pattern over several hours. This study strengthens the perception that pulsed electric fields can be used as a tool to manipulate calcium oscillations in human adipose derived MSCs using a novel pulse generator as the one specifically developed. These manipulations might be used as a tool to improve MSC engineering.

FA-8 [13:51]
STUDENT PAPER
A novel method for estimation of brain tissue electrical conductivity: from in silico to in clinico results
Andres Carvallo1, Julien Modolo1, Pascal Benquet1 & Fabrice Wendling1
1Univ Rennes, INSERM, LTSI - U1099, Rennes, France, 35000
Keywords: Human, ELF/LF, Completed (unpublished)
Presented by: Andres Carvallo
METHODS: We derived an analytical model of the electric potential generated by SEEG electrodes. We coupled the electric potential with an electrode-electrolyte interface model to i) derive an analytical expression of brain tissue response to biphasic pulses and ii) estimate conductivity.
RESULTS: We validated our biophysical model using i) saline solutions calibrated for electrical conductivity, ii) rat brain tissue, and iii) intracerebral electrophysiological data recorded in epileptic patients during pre-surgical evaluation.
CONCLUSIONS: Rapid and reliable brain tissue electrical conductivity estimation is achieved using the proposed method.

FA-9 [13:54]
STUDENT PAPER
Local thermal dosimetry applied to in vitro studies at millimetre waves
Rosa Orlacchio1, Maxim Zhadobov1, Stanislav Alekseev2, Ronan Sauleau1, Yann Le Page3 & Yves Le Dréan3
1Institut d'Électronique et de Télécommunications de Rennes (IETR), University of Rennes 1, Rennes, France, 35042
2Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Russian Federation, 142290
3Institute for Research on Environmental and Occupational Health (IRSET), University of Rennes 1, Rennes, France, 35042
Keywords: In vitro, RF/Microwaves, Work in Progress
Presented by: Rosa Orlacchio
This study investigates the role of thermal convection arising from high SAR gradients during in vitro
exposure to millimetre waves (MMW). The impact of the liquid volume and exposure duration on initiation of convective currents is investigated. Water and a convection-free medium with water-equivalent electromagnetic properties have been exposed to continuous wave (CW) and amplitude modulated MMW. Continuous and pulsed heating were recorded using a microthermocouple. Our results suggest that convection plays an important role in MMW-induced heating in in vitro experiments, and its initiation depends both on the volume of the exposed liquid and the duration of exposure.

FA-10 [13:57]
STUDENT PAPER
Effect of high frequency electric field on growth factor of cultured osteoblasts
Shunsuke Yamaguchi1, Masatake Akutagawa1, Hiromichi Yamoto2, Kouji Hirao2, Takahiro Emoto1, Hiroo Tarao3, Toshihiko Tominaga4, Toshitaka Ikeharaz, Yohsuke Kinouchi1

1Department of Electrical and Electronic Engineering, Tokushima University, Tokushima, Japan, 770-8506
2Department of Periodontology and Endodontology, Tokushima University, Tokushima, Japan, 770-0042
3Department of Electrical & Computer Eng., National institute of technology Kagawa college, Takamatsu, Japan, 761-8058
4Tominaga Dental Clinic, Naruto, Japan, 771-0360
5Institute for Health Sciences, Tokushima Bunri University, Tokushima, Japan, 770-8514

Keywords: In vitro, IF, Work in Progress
Presented by: Shunsuke Yamaguchi

In this experiment, high frequency AC voltage was applied to cultured osteoblasts. The voltage waveform used is a sinusoidal wave of 500 kHz 20 V. Temperature, voltage, osteoblastic VEGF, VEGFmRNA and ALP were measured. VEGF and VEGFmRNA were measured 1 day after voltage application and ALP was measured 7 days after. Durations of voltage application were 30, 60, 90 and 120 s. As results of them, it is obvious that it affects the osteogenesis of osteoblasts by electrical factors. Although it depends on the initial state (cycle) of the cells, VEGF was significantly increased at 90 seconds and VEGFmRNA at 120 seconds. Change of ALP by application of the electrical field was not observed in our experiment.

FA-11 [14:00]
STUDENT PAPER
Effect of long-term RF-EMF exposure on microglia activation in 5xFAD mice
Ye Ji Jeong1, 2, Hyung-Do Choi3, Jeong-Ki Pack4, Nam Kim5, Yun-Sil Lee6 & Hae-June Lee1

1Division of Basic Radiation Bioscience, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
2Department of Life Sciences, Korea University, Seoul, Korea
3Department of EMF Research Team, ETRI, Daejeon, Korea
4College of Engineering, Chungnam National University, Daejeon, Korea
5School of Electrical and Computer Engineering, Chungbuk National University, Cheongju, Korea
6Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Korea

Keywords: In vivo, RF/Microwaves, Work in Progress
Presented by: Ye Ji Jeong

To explore the long-term RF-EMF effect on Alzheimer’s disease, we performed 6 months RF-EMF exposure to 5xFAD mice (SAR 5W/kg, 2 h/day, 5 days/week) and investigated behavioral changes and neuroinflammatory response. 5xFAD mice exposed to long-term RF-EMF showed mild decrease in Aβ deposition, memory improvement, and decrease in expressions of Iba-1 and microglia regulator genes compared to sham exposed group. Our finding suggests possible mechanism of beneficial effect of long-term RF-EMF on AD mice.
Steepest-entropy-ascent quantum thermodynamic approach to scaling the electric field parameters and criticality related to cell signaling in electrically perturbed cells: Experimental evidence and rationale

Ishan Goswami1, Scott S. Verbridge2 & Michael R. von Spakovsky1

1Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA, 24061

2Biomedical Engineering and Applied Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA, 24061

Keywords: Mechanistic/Theoretical, Pulsed, Work in Progress

Presented by: Ishan Goswami

A successful coupling of standard cancer treatment modalities with electric field-based tumor ablation techniques requires a general understanding of the mechanism of action of each modality to evaluate synergistic effects for better treatment efficacies. The caveat, however, is that the electric field parameter space and the molecular pathways are so large that understanding the mechanism of action of electric fields via exploring all possible combinations is prohibitive from a cost and time standpoint. To solve this parameter space problem, this work introduces a new computational approach that takes advantage of thermodynamic scaling laws applicable to biomembranes. We report experimental evidence and the rationale behind this approach.
S03-1 [16:30]

Real-time detection of neuronal activity induced by time-varying magnetic field or electric field exposure in *in vitro*

Masateru Ikehata\(^2\), Keiji Wada\(^3\), Kei Makino\(^3\), Yukihsa Suzuki\(^3\), Atsushi Saito\(^1\), Sachiko Yoshie\(^2\) & Satoshi Nakasono\(^1\)

\(^1\)Central Research Institute of Electric Power Industry, Abiko, Japan
\(^2\)Biotechnology laboratory, Railway Technical Research Institute, Kokubunji, Japan
\(^3\)Tokyo Metropolitan University, Hachioji, Japan

Keywords: *In vitro, All Frequencies, Work in Progress*

Presented by: Masateru Ikehata

Rat primary cortical neuron culture and human iPS cell-derived neurons were used to investigate threshold of magnetic/electric stimulation of nerve cells in *in vitro*. Originally developed live cell imaging system for real-time detection of neuronal activity without disturbing by interference of magnetic field was used. In magnetic field exposure experiment, it seemed that response of neuron cell that synchronized with magnetic field in some cases but observed neuronal activity was not necessarily synchronized with magnetic field exposure. Improvement of cell direction, orientation of neuronal network and other factors may need to observe neuronal cell response certainly. Further results will be presented in the Congress.

S03-2 [16:45]

50 Hz 1 mT field exposure does not affect DNA global methylation of an *in vitro* model for Parkinson’s Disease

Barbara Benassi\(^1\), Stefania Santangeli\(^2\), Caterina Merla\(^1\), Letizia Tarantini\(^3\), Valentina Bottali\(^3\), Carmela Marino\(^1\) & Claudia Consales\(^1\)

\(^1\)ENEA-Italian National Agency for New Technologies, Energy and Sustainable E, Rome, Italy, 00123
\(^2\)Department of Life and Environmental Sciences, “Marche Polytechnic” University, Ancona, Italy, 60131
\(^3\)Department of Clinical Sciences and Community Health, University of Ferrara, Italy, 44122

S04-1 [16:30]

STUDENT PAPER

Occupational exposure to MRI-related magnetic stray fields and sleep quality among radiographers - A cross-sectional study in the Netherlands

Emre Ozdemir\(^1\), Kristel Schaap\(^1\), Anke Huss\(^1\) & Hans Kromhout\(^1\)

\(^1\)Division of Environmental Epidemiology, Institute for Risk Assessment Sciences, Utrecht, the Netherlands, 3508 TD

Keywords: Epidemiology, Static, Review, Commentary, Recommendation, Evaluation

Presented by: Emre Ozdemir

Summary: In this cross-sectional study, we investigated the potential association between occupational exposure to MRI-related magnetic stray fields and sleep quality among Dutch radiographers. We observed decreased sleep quality among radiographers who worked with or near MRI scanners.

S04-2 [16:45]

Survey of the facilities’ policies on allocating pregnant staff for MRI site and an attitude survey to non-ionizing radiation in Japan

Sachiko Yamaguchi-Sekino\(^1\), Shuhei Izawa\(^1\), Humio Maeyatsu\(^2\), Tsukasa Doi\(^3\), Takeo Hikichi\(^4\), Hideki Fujita\(^5\), Shinya Imai\(^6\), Manabu Akahane\(^7\) & Rui-Sheng Wang\(^1\)

\(^1\)National Institute of Occupational Safety and Health, Japan, Kawasaki, Japan, 2148585
\(^2\)Izumi Hospital, Sendai, Japan, 9813212
\(^3\)Takai Hospital, Tenri, Japan, 6320006
S03-3 [17:00]

Biological effect of the 50 Hz Magnetic Field in a three-dimension (3D) in vitro experimental model of SH-SY5Y human neuroblastoma cells

Claudia Consales1, Alessio Butera2, Mariateresa Mancuso1, Emanuela Pasquali1, Vanni Lopresto1, Rosanna Pinto1, Carmela Marino1 & Barbara Benassi1

1ENEA Italian National Agency for New Technologies, Energy and Sustainable E, Rome, Italy, 00123
2Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy, 00133

Keywords: In vitro, ELF/LF, Work in Progress
Presented by: Barbara Benassi

Given the reported limitations of the conventional 2D in vitro cultures of neuronal cells in terms of response to drugs and radiations, we here aimed at evaluating the effects elicited by the 50-Hz magnetic field (MF) on the human neuroblastoma SH-SY5Y cells grown in a new three-dimension (3D) scaffold in vitro. We demonstrate that (i) no change in proliferation, distribution of cell cycle phases and viability, and no induction of apoptosis is triggered by the MF in the SH-SY5Y cells if cultured in the 3D scaffolds; (ii) the intracellular

S04-3 [17:00]

Risk assessment for workers with pacemakers working in the near-field of a high-frequency EMF source

Carsten Alteköster1 & Marc Wittlich1

1Unit 4.4: Radiation, Institute for Occupational Safety and Health (IFA), Sankt Augustin, Germany, 53757

Keywords: Occupational, RF/Microwaves, Completed (unpublished)
Presented by: Carsten Alteköster

An important task of the Institute of Occupational Safety and Health (IFA) is to carry out risk assessments at workplaces in order to protect workers with active implantable medical devices exposed to electromagnetic fields. For this purpose the induced voltages at the input stage of these devices must be determined. A problem in the high-frequency range arises from the fact that the formulae used to calculate these voltages are derived under far-field conditions. However, this is often not the case. Therefore, we investigated the induced voltage level during a near-field exposure in a high-frequency electromagnetic field. The results suggest that the measuring of the power density could be sufficient in the scope of a risk assessment.
GSH content, as well as the expression of both the gamma-GCS (responsible for the GSH biosynthesis) and SOD1 genes are impaired by the MF exclusively in cells grown in the 3D culture conditions.

S03-4 [17:15]

8-oxoG DNA glycosylase-1 inhibition sensitizes Neuro-2a cells to oxidative DNA base damage induced by 900 MHz radiofrequency electromagnetic radiation
Zhou Zhou1, 3, Lei Zhang2, 3, Chuan Liu2, 3, Qin-Long Ma2, 3 & Zheng-Ping Yu2, 3
1Department of Occupational and Environmental Health, Zhejiang University, Hangzhou, China, 310058
2Department of Occupational Health, Army Medical University (Third Military Medical University), Chongqing, China, 400038
3Key Laboratory of Medical Protection for Electromagnetic Radiation, Ministry of Education, Army Medical University (Third Military Medical University), Chongqing, China, 400038

Keywords: In vitro, RF/Microwaves, Completed (published)
Presented by: Zhou Zhou

This study provided information about the in vitro putative genotoxicity during cell exposure to radiofrequency electromagnetic fields (RF-EMFs) with or without 8-oxoG DNA glycosylase-1 (OGG1) siRNA using Neuro-2a cells. Exposure to 900 MHz RF-EMFs with insufficient energy could induce oxidative DNA base damage in Neuro-2a cells. These increases were concomitant with similar increases in the generation of reactive oxygen species (ROS). With OGG1 siRNA, RF-EMFs could cause DNA base damage in Neuro-2a cells as low as 1 W/kg. This suggested that OGG1 is involved in the process of DNA base repair and may play a pivotal role in protecting DNA bases from RF-EMF induced oxidative damage.

S03-5 [17:30]

Do GSM-1800 induce DNA damage and genomic instability in nerve cells?
Isabelle Lagroye1, 2, Emmanuelle Poque-Haro2, Rémy Renom2, Florence Poullelier De Gannes2, Corinne El Khoueiry2, Yann Percherancier2 & Bernard Veyret1, 2
1EPHE, PSL, Paris, France, 75014
2IMS laboratory UMR5218, Bordeaux University,

S04-4 [17:15]

Novel mechanistic model for implant safety assessment at WPT and MRI frequencies
Ilaria Liorni1, Esra Neufeld1, Sven Kuehn1 & Niels Kuster1, 2
1Foundation for Research on Information Technologies in Society (ITIS Foundation), Zuerich, Switzerland, 8004
2Swiss Federal Institute of Technology (ETHZ), Zuerich, Switzerland, 8092

Keywords: Mechanistic/Theoretical, All Frequencies, Completed (unpublished)
Presented by: Ilaria Liorni

Current safety guidelines for exposure to electromagnetic fields (EMF) exclude medical implant wearers, and there is further no established method for assessing risks posed by EMF in this group. We propose a new mechanistic model for determining local exposure in the presence of implants based on incident field values valid over a wide frequency range. To validate the approach, predictions of the mechanistic model were compared to results of numerical simulations. The effects of parameters such as tissue properties, tip shape, and insulation thickness were studied. The findings support the formulation of safety standards for implant wearers exposed to EMF over a wide range of frequencies, including those used in wireless power transfer.

S04-5 [17:30]

STUDENT PAPER
Integration of big-data analytics in safety assessment of patients with medical implants during MRI exposure
Aiping Yao1, 2, Earl Zastrow1, Pedro Crespo-Valero3 & Niels Kuster1, 2
1ITIS Foundation, Zurich, Switzerland, CH-8004
2Department of Information Technology and Electrical Engineering, Zurich, Switzerland,
DNA damage was investigated in rat primary neurons and SH-SY5Y human neuroblastoma cells exposed to a GSM-1800 signal for 24 hr at SAR levels of 0.375, 1.5 and 6 W/kg, with or without menadione and methylmethane sulfonate. Both the alkaline comet assay and the micronuclei assay were used. We found no indication that GSM-1800 could lead to immediate DNA damage nor delayed DNA damage indicative of genomic instability. Coexposure experiments with chemicals in neuroblastoma cells showed that a specific combination of GSM-1800 at 6 W/kg and Menadione could transiently lead to increased micronuclei. Further investigation is needed to determine the underlying mechanism, although this type of exposure is unlikely in the daily life.

Novel MRI RF safety assessment of orthopedic implants via bone surface tangential E-fields

Manuel Murbach¹, Earl Zastrow¹, Esra Neufeld¹, Bryn Lloyd¹, Wolfgang Kainz³ & Niels Kuster¹, ²
¹IT’IS Foundation, Zurich, Switzerland, 8004
²ETH Zurich, Zurich, Switzerland, 8092
³US Food and Drug Administration (FDA), Silver Spring, Maryland, USA, 20993

The RF-induced heating of the patient with implant under MR exposure is a complex function of multi-factors, e.g., implant characteristic, patient anatomy, imaging position, RF coil, etc. A comprehensive safety assessment cannot be derived from limited clinical scenarios and in silico trials are usually required to assist the evaluation process. To address further needs for in silico trials, we have established a safety assessment workflow comprises a data library and toolset to perform a comprehensive evaluation in a timely and traceable manner. We demonstrate the proposed workflow through an evaluation of RF-induced heating of a spinal cord stimulator. More than 39 million unique clinical scenarios were emulated in silico.

Orthopedic implant manufacturers produce a large portfolio of on-bone devices. Current implant radiofrequency (RF) safety standards (e.g., ASTM F2182-11a, TS/ISO 10974), however, do not take advantage of very well-defined data on relevant RF exposures of these devices. In this study, we used the bone-surface-averaged tangential E-field as a close approximation of the incident field impacting an on-bone orthopedic device. Results show that the relevant surface-averaged tangential E-fields are less than half of the corresponding peak volume-averaged E-fields, which allows conservative but not overly conservative assessment of RF implant safety in magnetic resonance imaging.
T1-1 [08:30]

Systematic review approaches in environmental health sciences
Kristina Thayer¹

¹Integrated Risk Information System (IRIS) Division, National Center for Environmental Assessment (NCEA), US Environmental Prote, Durham, NC, USA, 27711

Biographical sketch
Kristina Thayer is the Integrated Risk Information System (IRIS) Division Director, located within the US Environmental Protection Agency (EPA) National Center for Environmental Assessment (NCEA). IRIS assessments identify the potential for a chemical to cause cancer or non-cancer health effects in people and are considered the top tier source of toxicity information used by EPA and other agencies to inform national standards, clean-up levels at local sites, and set advisory levels. IRIS uses systematic review methods to conduct assessments. Prior to joining EPA, Dr. Thayer was Deputy Division Director of Analysis at the National Toxicology Program (NTP) and Director of the NTP Office of Health Assessment and Translation (OHAT) located on the campus of the National Institute for Environmental Health Sciences (NIEHS). She is considered an expert on the application of systematic review methods to environmental health topics and the use of specialized software and automation approaches to facilitate conducting reviews.

Five relevant publications

1. NAS February 1-2, 2018 Workshop: “Review of Advances Made to the IRIS Process” (agenda and meeting materials)

Abstract
Adapting a systematic approach on scientific revision of EMF/health related evidence in order to bring more transparency to evaluations has become an important priority as the WHO RF EHC document and ICNIRP new guidelines are being prepared. The tutorial will provide an overview of implementation of systematic review methods to environmental health topics, to include the basic tenants of identifying relevant literature, approaches used to assess study quality, use of structured frameworks to convey confidence conclusions for a body of evidence, and approaches to integrate epidemiological, toxicological, and mechanistic evidence.
P2-1 [09:30]
The International Commission on Non-Ionizing Radiation Protection (ICNIRP) Draft Radiofrequency (100 kHz – 300 GHz) Guidelines
Rodney Croft1, 2
1School of Psychology, Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia, 2522
2International Commission on Non-Ionizing Radiation Protection, N/A, Australia

Biographical sketch
Rodney Croft is Professor of Health Psychology within the School of Psychology, University of Wollongong, where he leads a bioelectromagnetics research group at the Illawarra Health and Medical Research Institute (IHMRI). His doctoral research was in neurophysiology methodology, where he assessed and improved models for accounting for ocular voltage contamination of the electroencephalogram (EEG), followed by postdoctoral work utilizing his EEG expertise to explore the relation between neurochemistry and psychological/psychiatric function. Croft began researching effects of radiofrequency fields on humans in 2000, with the focus on potential detrimental effects on humans using the EEG. His bioelectromagnetics work now includes a range of methodologies, with as the unifying theme an attempt to understand the effect of non-ionizing radiation on human health and well-being. Croft has led Australian government-funded Centres of Research Excellence in this area since 2005, has been on the Main Commission of the International Commission on Non-Ionizing Radiation Protection (ICNIRP) since 2014, and chairs the ICNIRP Project Group developing its new radiofrequency guidelines.

Abstract
ICNIRP’s current guidelines for the radiofrequency (RF; 100 kHz – 300 GHz) portion of the electromagnetic spectrum were published in 1998. These have been very influential and form the basis of numerous international radiation Standards. However, given the large body of relevant research that has been generated since those 1998 guidelines and the associated development of knowledge, ICNIRP is now revising these guidelines.

The revision of the guidelines has been underway since 2014. ICNIRP takes the RF-health scientific literature as the basis for these guidelines, and from this is developing a system of limits that will protect people from all health effects arising from RF exposure (including both thermal and non-thermal effects). ICNIRP aims to make the rationale behind the guidelines as transparent as possible, and to this end will release a public consultation version of the guidelines to encourage input that will help inform the final guidelines. This will ensure that relevant literature is not missed and that all perspectives are appropriately considered. ICNIRP plans to release its public consultation document in 2018, and as part of this process it believes that BioEM 2018 would be an ideal forum for the initial dissemination of the draft document. Accordingly, this presentation will describe the ICNIRP RF Guidelines setting process, including its rationale, and the draft limits themselves. It would also outline the consultation process, how interested parties can contribute to this, and provide considerable opportunity for discussion with the floor.
S05-1 [11:00]
Validation of self-reported mobile phone use in the smartphone era: Findings from the SCAMP cohort
Mireku MO1, William Mueller1, Charlotte Fleming1, Irene Chang1, Iroise Dumontheil2, Michael Thomas2, Marloes Eeftens3, Paul Elliott1, Martin Röösli2 & Mireille Toledano1
1MRC-PHE Centre for Environment and Health, Department of Epidemiology and Biostatistics, Imperial College London, London, United Kingdom, W2 1PG
2Department of Psychological Sciences, Birkbeck, University of London, London, United Kingdom, WC1E 7HX
3Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland
Keywords: Epidemiology, RF/Microwaves, Completed (published)
Presented by: Mireille Toledano

Although adolescents’ self-reported mobile phone use contains inaccuracies with differential agreement, our findings demonstrate that self-reported usage adequately distinguishes between high and low use in the Study of Cognition, Adolescents and Mobile Phones (SCAMP) cohort.

S05-2 [11:15]
Large area mapping of general public radiofrequency power density exposure in Sweden during the years 2012-2017
Jimmy Estenberg1 & Torsten Augustsson1
1Swedish Radiation Safety Authority, Stockholm, Sweden
Keywords: Dosimetry (measurements), RF/Microwaves, Completed (unpublished)
Presented by: Jimmy Estenberg

We have developed a system for mobile, car based, isotropic spectral measurements of power densities within the frequency range of 30 MHz to 3 GHz. The system can quickly

S06-1 [11:00]
Weak static magnetic fields induce changes in fibrosarcoma cell growth, hydrogen peroxide, membrane potential and mitochondrial calcium
Hakki Gurhan1, Rodolfo Bruzon1, Sahithi Kandala1, Yanyu Xiong1 & Frank Barnes1
1Electrical, Computer and Energy Engineering, University of Colorado at Boulder, Boulder, Colorado, USA, 80309
Keywords: In vitro, Static, Work in Progress
Presented by: Sahithi Kandala

Fibrosarcoma cells are exposed to weak static magnetic fields between 0.5 microT and 600 microT. Changes in cell growth, hydrogen peroxide, membrane potential and mitochondrial calcium are observed.

S06-2 [11:15]
WITHDRAWN
cover large areas and the high sampling rate results in extensive data that allows computation of robust medians and means. 225'000 measurements were performed over the last five years. The median power densities were within 0.00087 - 2.6 mW/m² for different types of areas. The highest power density that we found was 690 mW/m². We have found a clear relation between population density and exposure level. Specific cumulative distribution functions of power densities will be presented for different sources and types of areas.

S05-3 [11:30] STUDENT PAPER

Computer/internet use and console gaming: The effect on cognitive function in Australian primary school students
Christopher Brzozek¹, Kurt Benke², ³, Berihu Zeleke¹, Michael Abramson¹ & Geza Benke¹
¹Centre for Population Health Research on Electromagnetic Energy (PRESEE), Monash University, Melbourne, Australia, 3004
²School of Engineering, University of Melbourne, Melbourne, Australia, 3010
³Department of Economic Development, Jobs, Transport and Resources (DEDJTR), AgriBio Centre, Melbourne, Australia, 3083
Keywords: Behavioural, Static, Work in Progress

Presented by: Christopher Brzozek

Computer/internet use and console gaming has greatly increased over the last two decades with children and adolescents becoming frequent users of these technologies at younger ages. The aims of this study were to investigate any potential associations between computer/internet use and console gaming with cognitive function in a cohort of primary school children. There were 412 participants from a representative sample of 36 state, private and Catholic schools. Overall computer/internet use and total screen time were found to have no associations, but console gaming was found to have significant associations with many of the cognitive functions by either shortening the response times or reducing the accuracy of responses.

S06-3 [11:30] STUDENT PAPER

The effects of 50 Hz magnetic fields and low dose cadmium co-exposure on cell viability in JAR cells
Yumin Jin¹, Aziguli Yimaer¹, Chuan Sun¹, Liling Su¹, Zhengping Xu¹ & Guangdi Chen¹
¹Bioelectromagnetics lab, Zhejiang University School of Medicine, Hangzhou, China, 310058
Keywords: In vitro, ELF/LF, Work in Progress

Presented by: Yumin Jin

In this study, we used JAR cells as main research cell model, and found that 50 Hz MF exposure enhanced cell viability in JAR cells in a time dependent way and could attenuate cadmium inhibited cell viability. Exposure to MF or cadmium, or co-exposure to MF and cadmium changed protein expression profile, and the differentially expressed proteins were enriched for signal transduction, protein translation and stress related pathways. Our data suggest that MF exposure enhanced cell viability and attenuated cadmium inhibited cell viability may be through changes of proteome profiling.

S05-4 [11:45]
Assessment of workers EM exposure during 50 Hz welding process
Mélina Bouldi¹
¹Electromagnetism, Vibration and Optics

S06-4 [11:45]
Microwave electric field at 2.45 GHz modulates the β-adrenergic response of human embryonic stem cell-derived cardiomyocytes
Laboratory, French National Institute for Occupational Health and Safety, Vandoeuvre lès Nancy, France, 54519

Keywords: Occupational, ELF/LF, Work in Progress
Presented by: Melina Bouldi

The low frequency magnetic field radiated from a spot-welding gun, commonly used in French industries, was experimentally characterized using an automated 3D mapping method. A numerical model of this source was also developed, and tuned for getting good concordance between simulated and experimental magnetic fields. For a first risk’s assessment, the volume in which the 2013/35/UE limit is exceeded was determined. Coupling between the numerical source and body model was then validated, using an analytical approach. New simulations were finally performed to calculate the electric field induced in the F-VHP human model. This two steps study allows a complete evaluation of the risk’s area, leading to preventive actions.

S05-5 [12:00]
STUDENT PAPER

Proximity to overhead power lines and childhood leukemia: An international pooled analysis
Aryana Amoon1, Catherine M. Crespi2, Anders Ahlbom3, Megha Bhatnagar1, Issy Bray4, Katherine Bunch5, Jacqueline Clavel6, 7, Maria Feychtling3, Denis Hemon6, Christoffer Johansen8, 9, Christian Kreis10, Carlotta Malagoli11, Fabienne Marquanti6, Camilla Pedersen9, Ole Raaschou-Nielsen8, 12, Martin Röösi13, 14, Ben Spycher10, Madhuri Sudan1, 15, 16, John Swanson17, Andrea Tittarelli18, Deirdre Tuck19, 20, Tore Tynes21, Ximena Vergara1, 22, Marco Vinceti11, 23, Victor Wünsch-Filho24 & Leeka Kheifets1
1Epidemiology, Los Angeles, CA, USA, 90095
2Biostatistics, Los Angeles, CA, USA, 90095
3Epidemiology, Karolinska Institutet, Stockholm, Sweden
4Health and Social Sciences, Bristol, United Kingdom
5Nuffield Department of Population Health, Oxford,

Catrin Williams1, Catherine Hather2, Adrian Porch1, Heungjae Choi1, Rhodhi Williams3, David Lloyd1, 4 & Christopher George5

1Centre for High Frequency Engineering, Cardiff University, Cardiff, United Kingdom, CF24 3AA
2ReNeuron, Bridgend, United Kingdom, CF35 5HY
3Cardiff University, Cardiff, United Kingdom, CF10 3NB
4Cardiff University, Cardiff, United Kingdom, CF10 3AT
5Institute of Life Sciences, Swansea University, Swansea, United Kingdom, SA2 8PP

Keywords: In vitro, RF/Microwaves, Completed (unpublished)
Presented by: Catrin Williams

Human embryonic stem cell-derived cardiomyocytes were exposed to pulsed microwave electric field (5.47 kV/m, 10 ms pulses at 50% duty cycle for 60 s, T_{max}=37°C) in a TM_{010} mode resonant cavity. This had a long-lasting effect on intracellular calcium signalling, caspase-3 and -7 activity and apoptotic cell death, as compared to a conventional heating control. Membrane poration did not play a role in the non-thermal mechanism of action. Future work will investigate the effects of non-thermal microwave electric field on voltage-gated calcium channels.

S06-5 [12:00]

Study on the non-thermal effects of exposing cells to 0.07-0.3 THz using a widely tunable source
Noriko Yaekashiwa1, Sato Otsuki1, Shin’ichiro Hayashi1, 2 & Kodo Kawase1, 3
1RIKEN, Sendai, Japan, 980-0845
2National Institute of Information and Communications Technology, Koganei, Japan, 184-8795
3Nagoya University, Nagoya, Japan, 464-8603

Keywords: In vitro, THz, Work in Progress
Presented by: Noriko Yaekashiwa

This study investigated the effects of Terahertz (THz) wave irradiation on the cell activity of normal human fibroblast (NTI-4) cells. Our research examined non-thermal effects on cells exposed to radiation at low power (below 10 μW) with tunable frequencies from 0.07 THz to 0.3 THz. Cells were exposed to THz wave for either 70 or 94 h. We found no difference in cell proliferation and cellular activity between THz-exposed cells and sham cells.
The association between childhood leukemia risk and distance to power lines has been examined in numerous studies with inconsistent results. In this paper, we provide a comprehensive assessment of this association and evaluate whether the association is due to magnetic fields or other factors associated with distance from overhead power lines. We present a pooled analysis combining individual-level data (29,049 cases and 68,231 controls) from 11 record-based studies. A series of subgroup, confounder, and sensitivity analyses were performed to evaluate whether bias, confounding, or other methodologic challenges inherent in these studies have substantial influence on the results.
Residential mobility and childhood leukemia in California Power Lines Study

Aryana Amoon¹, Sona Oksuzyan², Catherine M. Crespi³, Onyebuchi Arah¹, Myles Cockburn⁴, Ximena Vergara⁵ & Leeka Kheifets¹

¹Epidemiology, Los Angeles, California, USA, 90095
²Los Angeles County Department of Public Health, Los Angeles, California, USA, 90005
³Biostatistics, Los Angeles, California, USA, 90095
⁴Preventative Medicine, Los Angeles, California, USA, 90089
⁵Energy and Environment Sector, Electric Power Research Institute, Palo Alto, California, USA, 94304

Keywords: Epidemiology, ELF/LF, Completed (unpublished)

Presented by: Aryana Amoon

Studies of environmental exposures and childhood leukemia do not usually account for residential mobility. In addition to being a potential risk factor, mobility can induce selection bias, confounding, or measurement error in such studies. We attempt to disentangle this using stratified logistic regression, case-only analysis, and propensity-score adjustments to assess predictors of residential mobility between birth and diagnosis, and account for potential confounding due to it. Mobility varied by several sociodemographic characteristics, but not distance to the nearest power line nor calculated magnetic fields. Mobility appears to be an unlikely explanation for observed associations between power lines exposure and childhood leukemia.

Effects of combined exposure of 0.3 THz with ionomycin on cytokine production in human keratinocyte cells

Shin Koyama¹, Eijiro Narita¹, Yoko Shimizu¹, Kensuke Sasaki², Maya Mizuno², Soichi Watanabe², Masao Taki³, Naoki Shinohara¹ & Junji Miyakoshi¹

¹Laboratory of Applied Radio Engineering for Humanosphere, Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Japan, 611-0011
²Electromagnetic Compatibility Laboratory, National Institute of Information and Communications Technology, Koganei, Japan, 184-8795
³Department of Electrical & Electronic Engineering, Tokyo Metropolitan University, Hachioji, Japan, 192-0397

Keywords: In vitro, THz, Work in Progress

Presented by: Shin Koyama

The cellular effects of 24-hour combined exposure to 0.3 terahertz (THz) with ionomycin in human keratinocyte (HaCaT) cells were investigated. There was no significant increase on three kinds of cytokine production in the cells exposed to 0.3 THz with ionomycin compared with the ionomycin-treated cells alone. This result indicates that the combined exposure to 0.3 THz with ionomycin would be considered to have no or very little effect on the three kinds of cytokine production in HaCaT cells.
FB-1 [13:30] STUDENT PAPER

Development and evaluation of microwave antenna for transcatheter denervation
Shohei Matsuhara¹, Kazuyuki Saito¹, Hiroshi Kawahira¹, Nobuyoshi Takeshita² & Tomoyuki Tajima³
¹Chiba University, Chiba, Japan
²National Cancer Center, Kashiwa, Japan
³The University of Tokyo Hospital, Tokyo, Japan
Keywords: Clinical (therapy), RF/Microwaves, Work in Progress
Presented by: Shohei Matsuhara

In this study, a catheter, which ablates extravascular nerve by the thermal effect of microwave, is introduced. In addition, heating characteristics of the catheter are evaluated by the numerical calculation and the experimental investigation. As a result, temperature distributions around the catheter were revealed and the usefulness of a denervation catheter using microwave was suggested.

FB-2 [13:33] STUDENT PAPER

Numerical analysis of a three-compartment head model subjected to variation of input parameters
Anna Šušnjara¹, Mario Cvetkovic¹, Dragan Poljak¹ & Hrvoje Dodig²
¹Department of Electronics and Computer Science, University of Split, Split, Croatia, 21000
²Department of Naval Electronics and Information Technology, University of Split, Split, Croatia, 21000
Keywords: Dosimetry (computational), RF/Microwaves, Work in Progress
Presented by: Anna Šušnjara

A stochastic framework for the assessment of the induced electric field in the three-compartment model of human head is presented. The relative permittivity and conductivity of scalp, skull and brain are modelled as random variables. The statistical moments are calculated by means of a stochastic collocation method. The sparse grid interpolation in the multidimensional random space resulted in a small number of simulations. The sensitivity analysis of input parameters indicate the higher overall impact of relative permittivity over the tissue conductivity on the induced field in the brain. When considering the induced field along head axis, the results show the impact of parameters’ variability to be distributed unevenly.

FB-3 [13:36] STUDENT PAPER

Investigation of E-field strength from mobile phone base stations and transmitted power from 4th generation mobile phones
Shota Kurosaki¹, Masaki Hagiwara¹, Masao Taki¹, Atsuko Aimoto¹, Miwa Ikuyo¹, Kaoru Esaki¹ & Kanako Wake²
¹Department of Electrical and Engineering, 1 - 1 Minami-osawa, Hachioji-shi, Japan, 192-0397
²Electromagnetic Compatibility Laboratory, National Institute of Information and Communications Technology, Tokyo, Japan, 184-8795
Keywords: Dosimetry (measurements), RF/Microwaves, Review, Commentary, Recommendation, Evaluation
Presented by: Shota Kurosaki
We measured 4G Tx power and the total downlink E-field strengths during drive around Tokyo and Chiba area in Japan for about 8 hours. The association between 4G Tx power and the downlink E-field strengths was investigated. The total downlink E-field strength was high and 4G Tx power is low in the Center of the Capital while the total downlink E-field strength was low and the 4G Tx power is high in residential/rural area.

FB-4 [13:39]
STUDENT PAPER

Flexible conductive polymer microelectrode arrays for electropulsation, neurostimulation and electroporation in vitro and in vivo

Gerwin Dijk1, Hermanus Ruigrok2 & Rodney P. O' Connor2

1Bioelectronics, Ecole des Mines de Saint-Etiennes - Panaxium, Gardanne, France, 13120
2Bioelectronics, Ecole des Mines de Saint-Etiennes, Gardanne, France, 13120

Keywords: Electroporation, Pulsed, Work in Progress

Presented by: Gerwin Dijk

Organic conductive polymers are highly versatile materials that have been widely adopted in commercial electronics as display technology, transistors, LEDs and solar cells. Our research is exploring their use for interfacing biology with electronics. We have developed microelectrode array devices using the conductive polymer PEDOT:PSS for electropulsation, neurostimulation and electroporation investigations in vitro and in vivo. Here we will present our work using plastic bioelectronics to develop multiwell electrode arrays for in vitro studies using live cell imaging and flexible, implantable electrodes that are suitable for studying electropulsation effects with in vivo imaging and electrophysiology.

FB-5 [13:42]
STUDENT PAPER

Cell electroporation enhanced by conductive nanoparticles

Amina Ghorbel1, Lluis M. Mir1 & Tomás García-Sánchez1

1UMR 8203, CNRS, Gustave Roussy, Villejuif, France, 94805

Keywords: Electroporation, Pulsed, Work in Progress

Presented by: Amina Ghorbel

In order to optimize the outcome of Electroporation, a novel approach based on the use of conductive nanoparticles, is proposed to enhance locally the efficacy of the electric field intensity in the targeted biological sample.

FB-6 [13:45]
STUDENT PAPER

Does Extremely Low Frequency Magnetic Fields stimulations of the vestibular system modulate postural control in humans?

Nicolas Bouisset$^{1, 2}$, Sebastien Villard$^{1, 3}$, Daniel Goulet7, Michel Plante7, Martine Souques6, François Deschamps5, Genevieve Ostiguy7, Jacques Lambrozo6 & Alexandre Legros$^{1, 2, 3, 4, 8}$

1Human Threshold Research Group, Lawson Health Research Institute, London, ON, Canada
2Department of Kinesiology, Western University, London, ON, Canada
3Department of Medical Biophysics, Western University, London, ON, Canada
4Department of Medical Imaging, Western University, London, ON, Canada
5RTE, Département Concertation et Environnement, Paris-La Défense, France
6Service des Études médicales, EDF, Levallois-Perret Cedex, France
7Hydro-Québec, Montréal, Québec, Canada
8EuroMov, Université de Montpellier, Montpellier, France

Keywords: Human, ELF/LF, Work in Progress

Presented by: Nicolas Bouisset
Exposure to extremely low frequency magnetic fields (ELF-MF) induces electric fields and currents within the human body that modulate nervous system functions. Although still a matter of debate, there are evidences that the vestibular system could respond to ELF-MF. It is well established however that specific electrical stimulations of the vestibular system trigger specific postural outcomes. This work investigates the vestibular response to ELF-MF and alternating electrical currents through their impact on human postural sway.

FB-7 [13:48]
STUDENT PAPER
Alpha band analysis in resting EEG after exposure to radiofrequency signal (900 MHz): EEG/MEG study combined with an anatomic MRI
Jasmina Wallace1, 2, Lydia Yahia-Cherif3, 4, Laurent Hugueville3, 4, Christophe Gitton3, 4 & Brahim Selmaoui1, 2
1Department of Experimental Toxicology, Institut National de l’Environnement Industriel et des Risques (INERIS), Verneuil-en-Halatte, France
2Peritox Laboratoire de Péринatalité & Risques Toxiques, Unité mixte INERIS, Université de Picardie Jules Verne, CURS, Amiens, France
3Centre De NeuroImagerie De Recherche - CENIR, Institut Du Cerveau Et De La Moelle Épinière - ICM, Paris, France
4Inserm U1127, CNRS UMR 7225, Institut Du Cerveau Et De La Moelle Épinière - ICM, Paris, France
Keywords: Human, RF/Microwaves, Work in Progress
Presented by: Jasmina Wallace

With the extensive use of mobile phones (MP) several studies have been realized to understand the effects of radiofrequency exposure on brain activity. The results show changes in the alpha band spectral power. To better understand the cortical structures involved in these changes after MP exposure (900 MHz), we carried out electroencephalography and magnetoencephalography recording followed by the anatomical magnetic resonance imaging on healthy volunteers. Participants were selected according to inclusion criteria. They were healthy males or females, aged between 18 and 35, non-smokers and with regular sleep habits. Data analyses of 10 subjects are still under process and ready results will be presented at the conference.

FB-8 [13:51]
WITHDRAWN

FB-9 [13:54]
WITHDRAWN

FB-10 [13:57]
STUDENT PAPER
Effects of RF-EMF on APP-processing and cell death in mouse hippocampus cell line
Kyeonghee Yoon1, Sojeong Choi1, Nam Kim2, Hyung Do Choi3, Hae June Lee4 & Yun-Sil Lee1
1College of Pharmacy & Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Korea
2School of Electrical and Computer Engineering, Chungbuk National University, Chungju, Korea
3Department of EMF Research Team, Radio and Broadcasting Technology Laboratory, ETRI, Seoul, Korea, 139-706
4Division of Basic Radiation Bioscience, Korea Institute of Radiological and Medical Sciences, Seoul, Korea, 01693
Keywords: In vitro, RF/Microwaves, Work in Progress
Presented by: Kyeonghee Yoon

In vitro experiments were performed after exposure of LTE RF-EMF (1745 GHz) because currently,
the spread of LTE mobile communication network has increased. The LTE type RF-EMF was exposed to the cells for 24 hours at an intensity of 8 W/kg, which is the maximum intensity of our exposure system and Amyloid precursor protein (APP) processing and cell death effects were examined. RF-EMF exposure showed no significant changes of ADAM10 and BACE1 as well as expression of CTFβ and CTFα. RF-EMF, no significant cell death was induced. Even though more detailed experiments is needed, unlike to IR, exposure of 8 W/kg LTE type RF-EMF for 24 hours did not affect APP processing and cell death in HT22 hippocampus cells.

FB-11 [14:00]
STUDENT PAPER
Magnetic field effects on H2O2 and possible biological implications including cancer
Sahithi Kandala¹, Rodolfo Bruzon¹, Hakki Gurhan¹ & Frank Barnes¹
¹Electrical, Computer and Energy Engineering, University of Colorado, Boulder, Colorado, USA, 80309
Keywords: In vitro, Static, Work in Progress
Presented by: Sahithi Kandala
The links between Reactive oxygen species, Electromagnetic Fields and Biological Implications are explored. Experimental data is used as background to show the changes that are observed due to static magnetic fields on fibrosarcoma cells.

FB-12 [14:03]
WITHDRAWN

FB-13 [14:06]
STUDENT PAPER
Design of a triple band monopole antenna using parasitic elements with SAR reduction for WLAN and WiMAX Applications
Hanul Bong¹, Niamat Hussain¹, Min-Joo Jeong¹, Ji Woong Park¹, Seungwoo Lee² & Nam Kim¹
¹Chungbuk National University, Cheongju, Korea, 28644
²Korea Electric Power Corporation, Naju, Korea, 58217
Keywords: Public Health Policy, RF/Microwaves, Work in Progress
Presented by: Hanul Bong
A triple band antenna consists of a dipole, a monopole and parasitic elements is presented. The aimed frequency band is WLAN (2.4/5.8 GHz) and WiMAX (3.5 GHz) applications. The parasitic elements around feed line is introduced for improving the performance of the antenna. The antenna shows acceptable radiation pattern along with ~ 10 dB return loss at all three bands. Moreover, the proposed antenna with reflector got reduction of 85.12 %, 50.06 % and 36.87 % in 1g SAR value at 2.4 GHz, 3.5 Gzh and 5.8GHz, respectively when compared with international standard value.

FB-14 [14:09]
WITHDRAWN
GUIDELINES FOR DATA COLLECTION AND FOLLOW-UP REPORTING FOR EARLY STAGE HEALTH TECHNOLOGY ASSESSMENT OF ELECTROCHEMOTHERAPY OF SKIN MELANOMA AND BASAL-CELL CARCINOMA

Eva Pirc1, Leandro Pecchia2, Matej Reberšek1, Gregor Serša3, Marko Snoj4, Aleš Grošelj5 & Damijan Miklavčič1

1Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia, 1000
2School of Engineering, University of Warwick, Coventry, United Kingdom, CV4 7AL
3Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia, 1000
4Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia, 1000
5Department of Otorhinolaryngology and Cervicofacial Surgery, University Medical Centre Ljubljana, Ljubljana, Slovenia, 1000

Keywords: Electroporation, Pulsed, Completed (published)

Presented by: Eva Pirc

In this paper, two Markov models are presented that will be used for cost-effectiveness analysis of electrochemotherapy for treatment of basal cell carcinoma and skin melanoma. Few cost-effectiveness analyses of electrochemotherapy have already been done, but with a lack of information about the intervention effect on the quality of life of the treated patients, which may result in inaccurate or even inadequate conclusions. For this reason, guidelines for data collection and follow-up reporting are suggested in this paper. A simple table is presented that will simplify the data collection process. More realistic cost-effectiveness
analysis will most likely enable easier equipment purchase and clinical practice implementation.

S07-2 [16:45]

Point source electroporation for local, rapid and minimal invasive treatment of brain tumors
Shirley Sharabi², David Last², David Guez², Dianne Daniels², Sharona Salomon², Muhammad Hjouj³ & Yael Mardor¹, ²
¹Medical science, Tel Aviv university, Tel Aviv, Israel
²Advanced Technology Center, Sheba medical center, Ramat Gan, Israel, 52295
³medical imaging department, Alquds University, Ramat GanAlquds, Palestinian Territory

Keywords: Electroporation, Pulsed, Completed (unpublished)

Presented by: Shirley Sharabi

Existing treatments offer poor prognosis for glioblastoma multiforme patients. We have developed a unique minimally-invasive setup for treating brain tumors employing a single intracrani-al electrode placed within the tumor and an external surface electrode. This setup provides intratumoral irreversible-electroporation with surrounding blood-brain-barrier disruption, enabling efficient delivery of systemically administered drug to the residual tumor and surrounding infiltrating zone. An efficacy study conducted with this setup and systemic Cisplatin on glioma bearing rats demonstrated significantly increased survival rates, decreased tumor growth rates and significant activation of the immune system compared to control groups.

W1-2 [16:35]

EU-level risk assessment by SCHEER – the Scientific Committee on Health, Environmental and Emerging Risks, European Commission
Theodoros Samaras¹
¹Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece

S07-3 [17:00]

Electroporation detection with THz time-domain spectroscopy
Stefania Romeo¹, P. Thomas Vernier² & Olga Zeni¹
¹Institute for Electromagnetic Sensing of the Environment (IREA), CNR, Napoli, Italy, 80124
²Frank Reidy Research Center for Bioelectrics), Old Dominion University, Norfolk, Virginia, USA, 23508

Keywords: Electroporation, THz, Completed (unpublished)

Presented by: Stefania Romeo

We report here a new procedure for THz time-domain spectroscopic analysis of mammalian cell samples exposed to electroporating pulsed electric fields. Suspensions of human monococytes, Mono-Mac 6 (MM-6), were

W1-3 [16:45]

Country-level risk assessment in France by ANSES – the French National Agency for Food Safety, Environment and Labor
Johanna Fite¹
¹Department of Risk Assessment, ANSES (French National Agency for Food Safety, Environment and Labor), Maisons-Alfort, France

W1-4 [16:55]

The perspective of the European Academy for Environmental Medicine (EUROPAEM)
Michael Kundi¹
¹Center for Public Health, Department of Environmental Health, Medical University of Vienna, Viena, Austria
exposed to 8, 100 μs, 400 V (100 kV/m between the cuvette electrodes) pulses at 5 kHz, and then their spectral response between 0.2 and 1.5 THz was recorded with a commercial THz time-domain spectrometer. Pulse-exposed cells absorb more THz radiation than sham-exposed cells, suggesting that THz spectroscopy can be used as a powerful, label-free method for characterization of electroporation.

S07-4 [17:15]

Imaging using terahertz radiation; modelling of melanoma with computational phantoms
Zoltan Vilagosh¹, Alireza Lajevardipour¹ & Andrew Wood¹
¹Department of Health and Medical Sciences, Swinburne University of Technology, Hawthorn, Australia, 3122

Keywords: Clinical (diagnostics), Static, Work in Progress
Presented by: Zoltan Vilagosh

The capacity to gauge skin hydration levels gives the terahertz band (THz) an imaging potential different to Optical Coherence Tomography and Confocal microscopy. The capability to detect THz is improving, but imaging needs to meet a clinical need. Finite-difference time-domain skin computational phantoms aid the analysis of skin interaction with THz radiation. The presented phantoms have accurate anatomical layering and electromagnetic properties. Simulations have shown that the increased water content of melanomas and the freezing of the associated skin region can produce penetration to a depth of 4 mm. No current modality can image skin to 4 mm, thus THz imaging aids therapeutic decision making, such as the size of excision of melanoma.

S07-5 [17:30]

STUDENT PAPER

Analysis of effective pulsed power excitation for intracellular electroporation
Farzan Zare², Lakshitha Naranpanawe² & Negareh Ghasemi³
¹Queensland University of Technology (QUT), Brisbane, Australia, 4069
²University of Queensland (UQ), Brisbane, Australia, 4069
³Rehabilitation Centre, Clinics of Valens, Valens, Switzerland, 7317

Keywords: Electroporation, Pulsed, Completed (unpublished)

W1-5 [17:05]

Values and Evidence in Risk Assessment: Results from a Comparative Analysis
Gregor Durrenberger¹
¹Swiss Research Foundation on Mobile Communication - FSM, ETH Zurich, Zurich, Switzerland

W1-6 [17:15]

Insights from 30 years of medical practice in a neurology clinic
Jürg Kesselring¹
¹Rehabilitation Centre, Clinics of Valens, Valens, Switzerland, 7317

W1-7 [17:25]

Round Table Discussion
Jürg Kesselring¹
¹Rehabilitation Centre, Clinics of Valens, Valens, Switzerland, 7317
Presented by: Farzan Zare

Pulsed electric field induced electroporation for biomedical and agricultural purposes is becoming increasingly ubiquitous. However, the efficacy of various pulse characteristics and stimulation techniques are widely debated. A Jurkat T Lymphocyte cell is chosen as a model cell for finite element simulation analysis where the significance of membrane pore density and rotation of the cell is examined. The impact of these parameters on the spatial distribution of current density and the transmembrane potential are investigated as a function of frequency (1Hz to 1 GHz) based on a sinusoidal voltage excitation. A modulated pulse train combining low and high frequency excitation is proposed allowing for maximum intracellular electromanipulation.

S07-6 [17:45]

Improved cell permabilization by synergistic interaction between gold nanoparticles and electromagnetic fields

Matej Kranjc1, Vitalij Novickij2, Tamara Pezić1, Saša Haberl1, Tina Batista Napotnik1 & Damijan Miklavčič1

1Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia, 1000

2Institute of High Magnetic Fields, Vilnius Gediminas Technical University, Vilnius, Lithuania, 03227,

Keywords: Electroporation, Pulsed, Work in Progress

Presented by: Matej Kranjc

Pulsed Electromagnetic Field (PEMF) induced cell membrane permeabilization is an emerging technique of contactless increase of membrane permeability. The inferior efficacy of PEMF permeabilization compared to conventional electroporation is currently identified as a major drawback of the methodology. To address the problem, we decided to enhance the PEMF induced electric field by adding highly conductive gold nanoparticles (Au NPs) to enhance the induced electric field. We have determined, that the addition of Au NPs enhanced PEMF electroporation and allowed increase of the contactless permeabilization efficacy over PEMF electroporation alone with no effect on cell survival.

Conference Dinner
Tuesday June 26, 2018 • 19:00 - 22:00
Emerald (with welcome drink on the beach)
Wednesday June 27, 2018

Session: T2
Tutorial 2: Magnetic Nanoparticles as Therapeutic Agents: Focusing on the Role of a Scientist and Engineer
Wednesday June 27, 2018 • 09:00 - 10:00
Emerald
Chairs: Antonio Sarolic & Lluis M. Mir

T2-1 [09:00]

Magnetic nanoparticles as therapeutic agents: Focusing on the role of a scientist and engineer
Theodoros Samaras¹
¹Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece, GR-54124

Biographical sketch
Theodoros Samaras is Professor of Bioelectromagnetics at the Department of Physics, Aristotle University of Thessaloniki, Greece. He is a trained Medical Physicist specializing in the non-ionizing spectrum. He is working with computational multiphysics/multiscale methods for applied electromagnetics. His research interests include exposure assessment (both numerical and experimental) to electromagnetic fields and radiation; applications of electromagnetic fields in cancer therapy (hyperthermia, thermal ablation techniques); non-invasive brain stimulation with transcranial techniques; patient monitoring with electrical impedance tomography. In recent years, he has been active in the area of biomedical uses of magnetic nanoparticle, where he is attempting to transfer knowledge in dosimetry from other areas of bioelectromagnetics. He has been serving as a reviewer for several journals and funding organizations and as the national representative to European research co-ordination actions (BM0704, BM1309, TD1104, EMF-NET) and standardization committees (IEC TC106). He has been elected twice in the Council of the European Bioelectromagnetics Association (EBEA) and in the Board of the European Society for Hyperthermic Oncology.

Five relevant publications

Abstract
The tutorial addresses the use of magnetic nanoparticles (MNP) in medical therapy with a brief review of existing and envisaged techniques. Since nanotechnology is a multidisciplinary field, the tutorial focuses on the role of scientists and engineers in this emerging field of biomedicine. This role is not restricted to the manufacturing and physical characterization of MNP, using techniques like electron microscopy, magnetization measurements, etc. It extends to their in vitro and in vivo dosimetry, where dosimetric quantities, like specific absorption rate (SAR) or specific loss power (SLP), familiar to the bioelectromagnetics audience are used. However, new dosimetric concepts, like force per cell, may need to be introduced for the medical applications of MNP. Scientists and engineers working in this field are also challenged by uncertainty quantification and the reporting of MNP properties, which can vary a lot. Another area of interest is the design of appropriate magnetic fields and devices, reaching to other disciplines of computational multiphysics, like computational fluid dynamics. In this tutorial I will discuss, with the appropriate examples, the involvement of scientists and engineers in turning MNP to therapeutic agents.

Coffee Break
Wednesday June 27, 2018 • 10:00 - 10:30
Foyer

Session: P3
Plenary 3: Exploring Dielectrophoresis and its Applications in the Biomedical Sciences
Wednesday June 27, 2018 • 10:30 - 11:30
Emerald
Chairs: Myles Capstick & Caterina Merla

P3-1 [10:30]
Dielectrophoresis: present and potential biomedical applications
Ronald Pethig¹

¹School of Engineering, The University of Edinburgh, Edinburgh, UK, EH9 3JF

Biographical sketch
Ronald Pethig is Emeritus Professor of Bioelectronics at the School of Engineering, University of Edinburgh. He received training in electrical engineering and physical chemistry and has enjoyed many years working with cell biologists and biomedical engineers (e.g., as an adjunct scientist since 1982 at the Marine Biological Laboratory, Woods Hole; adjunct professor of physiology at the Medical University of Charleston, 1984-88). His main research interest has been the dielectric and electrochemical properties of biological materials, and in particular the development of the electrokinetic method of dielectrophoresis for characterizing and manipulating cells and other bioparticles for biomedical applications. In 2001 he received the Herman P Schwan Award for work in biodielectrics, and in 2017 the Lifetime Achievement Award of the American Electrophoresis Society (AES). Amongst other activities he currently serves as Editor-in-Chief of IET Nanobiotechnology and enjoys beekeeping.

Five relevant publications
Dielectrophoresis (DEP) manifests itself as the motion of a particle induced by exposing it to an electric field gradient. More than 50 years ago Pohl and Hawk (Science, 152: 647-9, 1966) demonstrated that this purely physical effect can be used to simultaneously distinguish and separate live and dead cells. Since then DEP manipulations of DNA, proteins, viruses, bacteria, blood cells, cancer cells and stem cells have been demonstrated. In this talk an outline will be given of the relationship between the DEP behavior of a bioparticle and its physico-chemical properties and, where appropriate, its physiological state. The present status and possible ongoing trends of biomedical applications of DEP will also be outlined. At least six commercial products incorporating DEP can be cited (Panasonic’s bacteria counter; Shimadzu’s nanoparticle analyzer; the DEPArray™ system developed by Silicon Biosystems; DEPtech’s 3DEP system; ApoStream™ technology for isolating tumor cells from peripheral blood; devices developed by Biological Dynamics for isolating nanoparticulate biomarkers from blood).

The cells themselves will “do the talking” for most of this presentation - by way of real-time videos - to reflect the intention of making the talk amenable to a multi-disciplinary audience.
(1.55 W/kg) resulted in both extension of microglial cell processes and altered responses of neurons to auditory stimuli, including reduced firing rate and enhanced duration of evoked responses. Comparisons with GSM-exposed healthy rats showed that neuroinflammation promoted cortical cell responses to GSM signals.

S08-2 [11:45]

Effect of 835 MHz radiofrequency radiation exposure on glucose metabolism in aging mice model

Hye-Ryoung Lee¹, Ju-Hwan Kim¹, Hakrim Kim¹, Hyung-Gun Kim¹ & Jin-Koo Lee¹
¹Department of Pharmacology, Dankook University, Cheonan, Korea, 31116
Keywords: In vivo, RF/Microwaves, Completed (unpublished)
Presented by: Hye-Ryoung Lee

Chronic exposure to RFR in aging animal models can lead to hypoglycemia by causing abnormalities in glucose metabolism. The resulting hypoglycemia can aggravate the survival rate in aging mice model.

S09-2 [11:45]

A molecular sensor for extremely low frequency magnetic fields: Stromal interaction molecules (STIM1 and STIM2) as candidate(s) for intracellular sensing of ELF-MF

Myrtill Simko¹ & Mats-Olof Mattsson¹
¹SciProof International AB, Östersund, Sweden, 83132
Keywords: Mechanistic/Theoretical, ELF/LF, Completed (unpublished)
Presented by: Myrtill Simko

Our hypothesis is that ELF-MF induce strongly localized temperature increases or electric fields within cells and activates STIM1, leading to Ca²⁺ concentration changes and/or ROS production. The alternative hypothesis is that ELF-MF activate STIM1 by oxidative stress or electric fields leading to the activation of downstream effects.

S08-3 [12:00]

STUDENT PAPER

Interleukin-6 plays an essential role in pulsed electromagnetic field improving cartilage and subchondral bone in mice with osteoarthritis

Xiaotian Yang¹,², Hongchen He¹,², Siyi Zhu¹,² & Chengqi He¹,²
¹Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China, 610041
²Key Laboratory of Rehabilitation Medicine in Sichuan, Chengdu, China, 610041
Keywords: In vivo, Pulsed, Completed (unpublished)
Presented by: Xiaotian Yang

PEMF therapy preserves cartilage degeneration and subchondral bone microstructure in mice with knee OA by inhibiting IL-6/Stat3 signaling. Interleukin-6 gene knockout alleviate cartilage degradation in mice with OA.

S09-3 [12:00]

In Silico electromagnetic and electrophysiological modelling of ultra-low field nuclear magnetic resonance based neuronal current imaging

Antonino Mario Cassara¹, Jan Storm², Nora Hofner², Esra Neufeld¹, Rainer Koerber² & Niels Kuster¹
¹IT’IS Foundation, Zurich, Switzerland, 8004
²Physikalisch-Technische Bundesanstalt, Berlin, Germany, 10587
Keywords: Mechanistic/Theoretical, ELF/LF, Work in Progress
Presented by: Antonino Mario Cassara

Neuronal current imaging (NCI) implemented via ultra-low-field magnetic resonance imaging technologies is a promising candidate for direct, non-invasive detection and imaging of brain electrical activity. We address effects related to the practical implementation of NCI techniques, e.g., spatio-temporal patterns of local neuro-magnetic fields, effects of source location, and the influence of tissue inhomogeneities,
relaxation times, anatomy of the human head, etc., combining multi-disciplinary data from bioelectromagnetics, MRI, computational neuroscience and experimental efforts to acquire the missing knowledge and promote technological developments for in silico design of NCI sequences for future in vivo imaging and clinical trials.

S08-4 [12:15]
Effects of extremely low frequency electromagnetic field (50 Hz) exposure on the bone marrow cells of mice
Isabelle Lagroye¹, 2, Emmanuelle Poque-Haro², Rémy Renom², Yves Le Dréan³, Florence Poulletier De Gannes², Annabelle Hurtier², Yann Percherancier², Denis Habauzit³ & Bernard Veyret¹, 2
¹EPHE, PSL, Paris, France, 75014
²IMS laboratory UMR5218, Bordeaux University, Talence, France, 33405
³Inserm U1085, Institut de Recherche sur la Santé, l’Environnement et le Travail – IRSET, Rennes, France, 35000
Keywords: In vivo, ELF/LF, Completed (unpublished)
Presented by: Isabelle Lagroye

BDF1 mice (up to 12 litters per group) were exposed 8 h/d, 5d/w for up to 8w of age at 1000 µT, beginning at conception. We tested a multi-hit model by irradiating fathers (X-rays) to induce genomic instability in the pups and further treatment with the genotoxic agent MNU in the young mice. In the bone marrow cells, genomic instability was evaluated as the presence of DNA damage, while the presence of gamma-H2AX and micronuclei was also assessed in the peripheral blood cells. Exposure to MF did not induce nor promote genomic instability in critical tissues. To our knowledge, this is the first in vivo study focusing on prenatal exposure and bone marrow in the context of a possible relationship between 50 Hz MF and childhood leukaemia.

S09-4 [12:15]
o²S²PARC – Open Online Simulations for Stimulating Peripheral Activity to Relieve Conditions
Esra Neufeld¹, Nicolas Chavannes¹, Antonino Mario Cassara¹, Bryn Lloyd¹, Pedro Crespo-Valero¹, Manuel Guidon¹, Odei Maiz¹, Tobias Oetiker¹ & Niels Kuster¹, 2
¹IT’IS Foundation for Research on Information Technologies in Society, Zürich, Switzerland, 8004
²Swiss Federal Institute of Technology (ETHZ), Zürich, Switzerland, 8092
Keywords: Mechanistic/Theoretical, All Frequencies, Work in Progress
Presented by: Niels Kuster

The NIH SPARC initiative aims to understand nerve-organ interactions and “advance the neuromodulation field towards precise treatment of diseases”. The aim of o²S²PARC is to establish an innovative, open online platform to host, connect, and execute computational models. It is centered on enhanceable, neuro-, physiology-, and data-functionalized computational anatomical models and uses a mechanistic, electrophysiological perspective to investigate PNS influence on organ physiology and device-driven neuromodulation. The final software will be a crucial contribution towards open source simulation platforms for the investigation of electroceuticals, neuroprosthetics research, and other neuromodulation-based therapies.
T3-1 [08:30]

Evaluation of animal cancer studies
Chad Blystone

1National Toxicology Program (NTP), NIEHS, National Institute of Health, Durham, NC, USA, 27709

Biographical sketch
Dr. Chad Blystone is a Toxicologist with the National Toxicology Program (NTP) located within the National Institute of Environmental Health Sciences (NIEHS). His expertise includes designing and interpreting animal cancer studies. He leads the NTP’s Chronic Toxicity and Carcinogenicity Technical Reports, a program that has evaluated chemicals and other agents in the two-year bioassay for over 30 years. These studies have contributed a significant amount of data for identifying potential human health hazards and NTP’s nearly 600 studies have provided an extensive database for researchers and international risk assessment organizations.

Abstract
In order to protect human health, rodent cancer studies have been used for decades to identify potential carcinogens. These studies are specifically designed to identify carcinogenic activity of tested agents, identify target organs, and characterize the exposure-response relationship after a long term exposure. Various health regulatory agencies may require rodent cancer studies during the development of new pharmaceuticals, pesticides, or other agents of potential concern. In the risk assessment of the tested agent, no observed adverse effect levels (NOAELs) or benchmark dose (BMD) will often be used to extrapolate the results to typically low human exposure levels. This tutorial will go through the various elements in designing, conducting, and interpreting rodent cancer studies to provide a background on these prominent evaluations of possible human health hazards.
While there has been consistent evidence that the symptoms experienced by IEL-EMF sufferers are likely the result of a nocebo response, much remains to be understood. The present study investigated whether perceived EMF exposure would elicit symptoms in a healthy population, and assessed whether messages that emphasize ‘adverse health effects of EMF exposure’ can alter this nocebo response. The results revealed 1) the crucial role of awareness and belief of exposure in the presentation of symptoms during perceived exposure to EMF; 2) that healthy participants exhibit a similar nocebo response to those who suffer from IEL-EMF; and 3) that alarmist media reports raise concerns about EMF and may contribute to a symptomatic nocebo response.
François Deschamps6, Genevieve Ostiguy4, Jacques Lambrozo5 & Alexandre Legros1, 2, 3, 7, 8
1Human Threshold Research Group, Lawson Health Research Institute, London, Ontario, Canada
2Medical Biophysics, Western University, London, Ontario, Canada
3Kinesiology, Western University, London, Ontario, Canada
4Hydro-Québec, Montréal, QC, Canada
5Service des Études Médicales, EDF, Paris, France
6Service Environnement Réseaux, RTE, Paris, France
7Medical Imaging, Western University, London, ON, Canada
8EuroMov, Université de Montpellier, Montpellier, France

Keywords: Behavioural, ELF/LF, Work in Progress
Presented by: Sebastien Villard

The study of magnetophenes suggests that sensory systems interact with induced electric fields generated by time-varying magnetic stimulation. Postural control literature, also suggests that the vestibular system is sensitive to induced electric fields. Yet, postural control is an indirect indicator of the vestibular performance. We are proposing to probe the vestibular function through the measurement of the Subjective Visual Vertical (SVV). Participants were exposed to 4 frequencies of stimulation (20, 60, 120 and 160 Hz) at constant maximum dB/dt of 14.2 T.s⁻¹ in the Magnetic Field condition and 2 mA in the electric condition. No effects of the stimulations on SVV are reported so far.

S10-3 [11:30]
Collaborative development of an innovative provocation protocol in studying electrohypersensitivity
Maryse Ledent1, Maël Dieudonné2, Jimmy Bordarie3, Willy Pirard4, Benjamin Vatovez4, Christophe Geuzaine5, Veronique Beauvois5 & Luc Verschaeve1
1Risk Assessment, Scientific Institute of Public Health (WIV-ISP), Brussels, Belgium, 1050
2Centre Max Weber (CMW), Lyon, France, 69007
3Université Sorbonne Nouvelle, Paris, France, 75231
4Institut Scientifique de Service Public (ISSeP), Liège, Belgium, 4000
5Applied and Computational Electromagnetics (ACE), Université de Liège, Liège, Belgium, 4000

Keywords: Human, All Frequencies, Work in Progress

S11-3 [11:30]
Exposure to electromagnetic fields from smart meter technologies in Great Britain (Phase 3): On-site measurements in homes
Nishtha Chopra1, Darren Addison1, Carolina Calderon1, Myron Maslanyj1 & Azadeh Peyman1
1Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Didcot, United Kingdom, OX11 0RQ

Keywords: Dosimetry (measurements), RF/Microwaves, Completed (unpublished)
Presented by: Nishtha Chopra

Real-life electromagnetic field measurements were performed for smart meter devices installed in residential properties across Great Britain, to determine power densities and duty factors associated with the Home Area Network signals. Of all devices measured, the maximum...
Progress

Presented by: Maryse Ledent

Electrohypersensitivity syndrome (EHS) is characterised by a variety of non-specific symptoms that are attributed to electromagnetic fields (EMF) by electrohypersensitive people (EHP). However, despite the great distress of certain individuals, symptoms cannot be objectively attributed to EMF so far: results of provocation studies converge to the conclusion that EHP do not perceive and do not respond physiologically to EMF. However, a critical review of these studies reveals that several parameters have not been controlled or considered. An original provocation test is being developed. To meet acceptability criteria an iterative co-creation process involving EHP, researchers and technical experts is implemented.

S10-4 [11:45]

STUDENT PAPER

Modeling of electrocardiogram generation based on electric field analysis with numerical human model

Tatsuhito Nakane¹, Takahiro Ito¹, Akimasa Hirata¹, Nobuaki Matsuura² & Hiroyoshi Togo²

¹Department of Electrical and Mechanical Engineering, Nagoya, Japan, 466-8555
²Device Innovation Center, NTT, Kanagawa, Japan, 243-0198

Keywords: Human, Static, Work in Progress

Presented by: Tatsuhito Nakane

In this study, we proposed an electrocardiogram (ECG) generation model by electric field analysis to develop a performance evaluation of wearable devices. The propagation of the electrical excitation in the conduction pathway of the heart can be approximated by sequentially-placed small electric dipole. We conducted computer simulations that solve potentials based on the scalar-potential finite-difference (SPFD) method with one electric dipole placed as a source. Post-processing is then applied to simulate the ECG waveforms for multiple computations. Our computational results demonstrated the effectiveness of ECG modeling using electric dipoles.

S11-4 [11:45]

Statistical RF exposure analysis for multiple massive MIMO antennas

Maarouf Al Hajj¹, Yuanyuan Huang¹ & Joe Wiart¹

¹Chaire C2M, Télécom ParisTech, Paris, France, 75013

Keywords: Dosimetry (computational), RF/Microwaves, Completed (unpublished)

Presented by: Joe Wiart

This paper presents a statistical analysis of the human exposure linked to multiple M-MIMO antennas emissions. The aim of this study is to better estimate the compliance boundary around 5G base stations utilizing M-MIMO antennas without complex estimation methods for different transmission and traffic characteristics, and for different power ratios between the antennas. The statistical estimation is obtained by representing the exposure as a beta distribution with parameters depending on each configuration. The exposure induced by different scenarios of multiple transmitters is statistically performed. Based on that, the ratios of the quantile of total exposure to the theoretical maximum are studied and presented.

S10-5 [12:00]

Probability of Injury from Radio Frequency Exposure (PIRE): A program to summarize and expand our knowledge of potential exposure

S11-5 [12:00]

Exposure assessment of 60 GHz communication antenna and 79 GHz automotive radar
damage produced by RF exposure
Jeffrey Whitmore¹ & Jason Payne¹
¹Radio Frequency Bioeffects Branch, United States Air Force, Fort Sam Houston, Texas, USA, 78232
Keywords: Human, RF/Microwaves, Work in Progress
Presented by: Jeffrey Whitmore

The potential for humans to receive a high power RF exposure is increasing as RF source technology continues to advance. Currently there is no comprehensive model relating the parameters of a RF exposure (e.g., power density, exposure duration, and frequency) to the nature and severity of an injury. This work intends to establish a model driven, empirically-validated description of thermal damage produced in tissue by RF exposure.

Gunter Vermeeren¹, Sven Kuehn², Björn Debaillie³, Guy Torfs⁴, Niels Kuster², Piet Demeester⁴, Wim Van Thillo³, Luc Martens¹ & Wout Joseph⁵
¹imec - WAVES, Department of Information Technology at Ghent University, Ghent, Belgium, B-9052
²IT’IS Foundation, Zürich, Switzerland, 8004
³imec - IoT, Leuven, Belgium, B-3001
⁴IDlab, Department of Information Technology at Ghent University - imec, Ghent, Belgium, B-9052
⁵WAVES, Department of Information Technology at Ghent University - imec, Ghent, Belgium, B-9052
Keywords: Dosimetry (measurements), RF/Microwaves, Completed (published)
Presented by: Gunter Vermeeren

We measured the exposure, in terms of spatial-averaged power density, of a 60 GHz wireless communication module and 79 GHz automotive radar at distances less than 30 mm of the antenna. We assessed the upper limit on the exposure by transmitting maximum power and at 100 % duty-cycle and compared this upper limit to the ICNIRP and FCC basic restrictions. The upper limit complied with ICNIRP basic restrictions, but exceeded FCC basic restrictions at short distances of the antennas. This difference in compliance is mainly due to the difference in averaging area and limits specified by both guidelines.

S10-6 [12:15]
Optimization of an on-skin lens-into-the-body for implantable medical devices
Christopher Trampel¹
¹Department of Engineering, Weber State University, Ogden, UT, USA, 84408-1803
Keywords: Human, RF/Microwaves, Work in Progress
Presented by: Christopher Trampel

This abstract describes the optimization of a novel wearable metasurface sensor, the lens-into-the-body, for implantable medical devices (IMDs). The lens-into-the-body is an on-skin device designed to focus the electromagnetic fields from an RFID reader on an implant. The function of the lens is to increase the read-range of an RFID communication system for medical implants. Full-wave simulations of the optimized lens are discussed.

S11-6 [12:15]
Microwave hyperthermia treatments of palms: a promising tool of control against Rhynchophorus ferrugineus (Coleoptera: Curculionidae)
Rita Massa¹, Daniele Pinchera², Marco Donald Migliore², Fulvio Schettino², Emilio Caprio³, Raffaele Griffo⁴, Manuela Martano⁵, Paola Maiolino⁵ & Gaetano Panariello²
¹Physics Department "Ettore Pancini", University of Naples Federico II, Naples, Italy, 80126
²Department of Electrical and Information Engineering "Maurizio Scarano", University of Cassino and Southern Lazio, Cassino, Italy, 03043
³Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy, 80100
⁴Plant Protection Service, Campania Region, Naples, Italy, 80100
⁵Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy, 80100
Keywords: Dosimetry (measurements), RF/Microwaves, Work in Progress
Presented by: Rita Massa
This work is aimed at demonstrating the feasibility of the microwave heating as a tool to contrast the Red Palm Weevil (RPW) Rhynchophorus ferrugineus pest, which is currently affecting many palm species all over the world. Microwave technology is effective and eco-compatible, and suitable for use within an Integrated Pest Management (IPM) strategy. In this work we demonstrate the microwave heating allows to reach insect lethal temperature, without affecting the internal palm tissues, when an electromagnetic-thermal protocol specially developed is applied.
S12-2 [13:45]

Nanosecond bipolar cancellation of action potentials in nerve fibers

Maura Casciola¹ & Andrei Pakhomov¹
¹Frank Reidy Research Center for Bioelectrics, Norfolk, Virginia, USA, 23508

Keywords: Electroporation, Pulsed, Completed (unpublished)

Presented by: Maura Casciola

Advancements in pulsed power technology allow to deeply focus sub nanosecond electric pulses (nsEP) in tissues, opening opportunities for non-invasive, targeted electrical stimulation. Our recent publication [1] showed that 12-nsEP can elicit thousands of action potentials in sciatic nerves without electroporative damage. However, the stimulation threshold for bipolar (BP) pulses, such as the emitted ones, is higher than for unipolar (UP) already in the µs scale [2]. Here, using pulses in the ns-µs range, we show for the first time that the shorter the pulse the higher the ratio between BP and UP stimulation threshold, challenging the possibility to use sub-nsEP for remote stimulation.

S12-3 [14:00]

Detecting the structural changes of planar lipid bilayer exposing to nanosecond electric field

Peter Kramar¹, Damijan Miklavčič¹ & P. Thomas Vernier²
¹University of Ljubljana, Ljubljana, Slovenia
²Old Dominion University, Norfolk, Virginia, USA

Keywords: Electrochemistry, Static, Work in Progress

Presented by: Peter Kramar

Planar lipid bilayers are often used to study electroporation phenomena. In this study, preliminary experiments were carried out to measure changes in planar lipid bilayer resistance and capacitance resulting from exposure to nanosecond pulsed electric fields. We also looked at the effects of calcium and magnesium ions on bilayer electrical properties. The results raise several new questions that challenge our basic understanding of membrane responses to nanosecond pulsed electric fields.

W2-2 [13:40]

Research on environmental EMF as possible carcinogens in relation with interaction mechanisms also leading to beneficial effects

Isabelle Lagroye¹
¹Ecole Pratique des Hautes Etudes, Paris, France

W2-3 [14:05]

Research on use of EMF in cancer treatment from the point of view of the COST Action EMF-MED

Mats-Olof Mattsson¹, ²
¹AIT Austrian Institute of Technology, Tulln, Austria, 3430
²SciProof International AB, Östersund, Sweden, 83132

The COST Action BM1309 (European network for innovative uses of EMFs in biomedical applications, EMF-MED) provides a cooperative framework to support research on beneficial biological effects of non-ionizing electromagnetic fields and their use in biomedical applications. One of the Working Groups of the Action focuses on “Cancer-EMF interactions and applications”, where a platform for research dealing with diagnosis and treatment of cancer using EMF and/or EMF-based technologies has been established. This presentation has the focus on interaction mechanisms and will summarize past and present Action activities related to these objectives, and indicate promising future research activities that have been identified by the Action.
STUDENT PAPER

Ion models and ion transport in molecular simulations of electrically stressed biological membranes
Federica Castellani1, 2 & P. Thomas Vernier2
1Biomedical Engineering, Frank Batten College of Engineering and Technology, Old Dominion University, Norfolk, Virginia, USA, 23508
2Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, Virginia, USA, 23509
Keywords: Electroporation, Pulsed, Work in Progress
Presented by: Federica Castellani

Standard ion models in the widely used CHARMM36 force field for molecular dynamics simulations are not properly optimized for systems representative of biological membranes. For simulations of Ca2+ interactions with lipid bilayers we have implemented ion parameters that result in more realistic interactions between Ca2+, water, and phospholipids. With this improved model we have characterized lipid pore-mediated ion transport in these systems by tracking the electric field- and diffusion-driven passage of ions and other species through field-stabilized pores over time, calculating the resulting currents and conductances, and relating these transport properties to the pore geometry.

W2-4 [14:30]

Protective effects of non-ionizing radio frequency fields in mammalian cells damaged by mutagens
Maria Scarfi1
1CNR-Institute for Electromagnetic Sensing of the Environment (IREA), Naples, Italy

S12-5 [14:30]

Biocontrol of skin infections causative Pseudomonas aeruginosa using nanosecond pulsed electric fields: an in vivo study
Vitalij Novickij1, Auksė Zinkevičienė2, Eglė Lastauskiene3, Jurgita Švedienė4, Algimantas Paškevičius4, Svetlana Markovskaja5, Jurij Novickij1 & Irutė Girkontaitė2
1Institute of High Magnetic Fields, Vilnius Gediminas Technical University, Vilnius, Lithuania, 03227
2Department of Immunology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania, 08406
3Institute of Biosciences, Vilnius University, Vilnius, Lithuania, 10257
4Laboratory of Biodeterioration Research, Nature Research Centre, Vilnius, Lithuania, 08412
5Laboratory of Mycology, Nature Research Centre, Vilnius, Lithuania, 08406
Keywords: Electroporation, Pulsed, Completed (unpublished)
New in vivo data of successful eradication of skin bacterial contamination using nanosecond range electroporation (EP) (20 kV/cm x 500 ns x 1000 pulses, 15 kHz) separately and in combination with 1% acetic acid (AA) is presented. Bioluminescent Pseudomonas aeruginosa and BALB/C mice were used as a model. Combination of EP and AA 1% resulted in full eradication of bacteria in the contaminated area. In all cases the muscle contractions were minimal due to ultrashort pulsing protocols. The results are useful for the development of new methods for treatment of extreme cases of wound infections when the chemical treatment is no longer effective.

S12-6 [14:45]

Remarkable differences in the response of voltage-gated Na⁺ current to a single or pair of high intensity nanosecond electric pulses in adrenal chromaffin cells
Lisha Yang¹, Sophia Pierce¹, P. Thomas Vernier², Indira Chatterjee³, Gale Craviso¹ & Normand Leblanc¹
¹Department of Pharmacology, University of Nevada, Reno, Nevada, USA, 89557
²Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, Virginia, USA, 23508
³Department of Electrical and Biomedical Engineering, University of Nevada, Reno, NV, USA, 89557

Keywords: Electroporation, Pulsed, Work in Progress

Presented by: Normand Leblanc

This study explored the effect of pairs of 5 ns electric pulses (NEP) on Na⁺ current (I_{Na}) in adrenal chromaffin cells. Cell exposure to two NEP separated by a 1 s interval produced a transient inhibitory effect on I_{Na} (8% at 5 MV/m; 15% at 8 MV/m). The recovery of I_{Na} following inhibition was not seen with a single NEP. Reducing the time interval between the two pulses from 1 s to 0.1 s led to similar effect on I_{Na}. A further reduction of the time interval to 10 ms abolished the inhibition of I_{Na} at 5 MV/m. At 8 MV/m, I_{Na} could still be inhibited by a pulse pair but the current fully recovered and even exceeded baseline. These results suggest that NEPs can modulate I_{Na} to allow for fine tuning of excitability in chromaffin cells.
S13-1 [15:30]
STUDENT PAPER

Design of a low specific absorption rate microstrip patch antenna for WLAN applications
Niamat Hussain¹, Min-Joo Jeong¹, Ji Woong Park¹, Hanul Bong¹, Uktam Azimov¹ & Nam Kim¹
¹Chungbuk National University, Cheongju, Korea, 28644

Keywords: Public Health Policy, RF/Microwaves, Work in Progress
Presented by: Niamat Hussain

We presented the design of a microstrip patch antenna with low Specific Absorption Rate (SAR) for WLAN applications. The antenna consists of a diagonally truncated patch and a ground plan, which were patterned on both sides of RO4003 substrate. The antenna provided, good impedance matching and radiation pattern with stable gain for the bandwidth of 5.1–6.06 GHz. Moreover, the antenna showed 88% reduction in SAR₁₀g and 75% in SAR₁₀₀g values without using any extra back reflector compared to the international SAR standards.

S13-2 [15:45]

Analytical determination of maximal power-density averaging areas for conservative 5G exposure assessment and computational validation
Esra Neufeld¹, Eduardo Carrasco¹, ⁴, Manuel Murbach¹, Quirino Balzano¹, ³, Andreas Christ¹ & Niels Kuster¹, ²
¹IT’IS Foundation for Research on Information Technologies in Society, Zürich, Switzerland, 8004
²Swiss Federal Institute of Technology (ETHZ), Zürich, Switzerland, 8092
³Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland, USA
⁴Information Processing and Telecommunications Center, Universidad Politecnica de Madrid, Madrid, Spain

Keywords: Standards, RF/Microwaves, Completed (published)
Presented by: Niels Kuster

Exposure thresholds for 5G frequencies are mostly formulated in terms of surface averaged incident power density. For localized exposure, critical heating can occur when the averaging area is too large. An analytical model of the antenna distance-, aperture-, and frequency-dependence of the maximal averaging area was derived and validated against simulations of a wide range of single element antennas and antenna arrays, resulting in recommendations for standardization.

S13-3 [16:00]

Levels of environmental non-ionizing electromagnetic radiation in children’s home with Acute Leukemia in the Metropolitan Area of Guadalajara and current situation of the regulatory framework in Mexico
Leonardo Soto-Sumuano¹, Emanuel Abundis-Gutierrez¹, Roberto Garibaldi-Covarrubias², Alberto Tlacuilo-Parra³ & Yuridia Salazar-Galvez³
¹Information Systems Department, Universidad de Guadalajara, Guadalajara, Mexico, 44100
²Hematology and Oncology, Pediatric Hospital, Guadalajara, Mexico, 44100
³Research Department, Pediatric Hospital of IMSS, Guadalajara, Mexico, 44100
Exposure to electromagnetic radiation has caused an environmental imbalance both for the preservation of health and life itself. This article describes original results obtained from the intradomiciliary measurement of ELF and RF in homes of pediatric patients with acute leukemia in the metropolitan area of Guadalajara, presents a discussion of the possibility that RF be a risk factor either in the development of leukemia or in preventing its cure or worsening the patient’s condition, analyzes international regulation and examines the impact of the lack of regulations in Mexico even though the current legal framework recognizes the electromagnetic radiation as a pollutant and a possible threat to human health.

S13-4 [16:15]

Research programme "Radiation Protection in the Process of Power Grid Expansion"
Blanka Pophof1, Cornelia Egbomassé-Roid1, Dirk Geschwentner1, Jens Kuhne1, Christiane Pölzl-Viol1, Janine-Alison Schmidt1 & Gunde Ziegelberger1
1Radiation and Health, Federal Office for Radiation Protection, Oberschleißheim/Neuherberg, Germany, D-85764

Keywords: Public Health Policy, ELF/LF, Concept

Presented by: Blanka Pophof

In Germany, the existing electric power transmission and distribution grids will be expanded. In order to improve risk assessment and to reduce scientific uncertainties, the Federal Office for Radiation Protection (BfS) will conduct an accompanying research programme "Radiation Protection in the Process of Power Grid Expansion". Eight research topic areas will be investigated. The research programme started in 2017.

Session: W3
Workshop 3: Advanced Approaches for Analysis of Biological Effects of Pulsed Electric Fields
Thursday June 28, 2018 • 15:30 - 18:00
Europa D
Chairs: Michal Cifra & Lluis M. Mir

W3-1 [15:30]

Workshop content
Michal Cifra1 & Lluis M. Mir2
1Institute of Photonics and Electronics, The Czech Academy of Sciences, Prague, Czech Republic
2Laboratory of Vectorology and Anticancer Therapies, UMR 8203, CNRS, Univ.Paris-Sud, Université Paris-Saclay, Gustave Roussy, Villejuif, France, 94805

The proposed workshop is dedicated to presentation and discussion of advanced technologies and methods to study the effects of pulsed electric fields on living cells mainly at the cellular and molecular levels, for improving the knowledge and applicability of future medical applications. The focus will be on technologies based on advanced chemiluminescence techniques, advanced linear and nonlinear optical and imaging techniques (Raman, CARS and THz microspectroscopy), numerical microdosimetry and molecular dynamics modeling.

W3-2 [15:40]

Endogenous biological chemiluminescence for probing oxidative effects of electric pulses
Michal Cifra1, Djamel E. Chafai1, Daniel Havelka1 & Lluis M. Mir2
1Institute of Photonics and Electronics, The Czech Academy of Sciences, Prague, Czech Republic, 18200
2Laboratory of Vectorology and Anticancer Therapies, UMR 8203, CNRS, Univ.Paris-Sud, Université Paris-Saclay, Gustave Roussy, Villejuif, France, 94805
Oxidative reactions in biological systems generate endogenous chemiluminescence. We report how this endogenous light is affected by intense electric pulses. It was found that a train of several short pulses tends to induce a stronger response of endogenous chemiluminescence from cells than the single long pulse while total duration and other conditions are the same. We suggest that the endogenous biological chemiluminescence can be used for label-free real time monitoring of biological oxidation initiated by intense electric pulses.

W3-3 [16:00]
Molecular models used in the interaction between nanosecond pulses electric fields and biomolecules
Paolo Marracino¹, Elena della Valle¹, Maura Casciola², Micaela Liberti¹ & Francesca Apollonio¹
¹Department of Information Engineering, Electronics and Telecommunications, University Sapienza of Rome, Rome, Italy
²Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA

When dealing with the interaction of electric fields and bio-systems, the very first mechanism is observed at molecular level; therefore, the need for accurate and reproducible models able to describe the time evolution of the target in presence of the external fields are needed.

W3-4 [16:20]
Speaker 3
Mounir Tarek¹
¹Centre National de La Recherche Scientifique (CNRS), Université de Lorraine, Nancy, France

W3-5 [16:40]
Shared knowledge, gaps and challenges of microdosimetry: Importance of realistic models at the cellular and subcellular level
Agnese Denzi¹, Caterina Merla², Francesca Apollonio¹, Lluis M. Mir³ & Micaela Liberti¹
¹Department of Information Engineering, Electronics and Telecommunications, University of Rome “La Sapienza”, Rome, Italy, 00184
²SSPT - Division of Health Protection Technologies, ENEA, Rome, Italy
³Gustave Roussy, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Villejuif, France

In the study of the biophysical mechanisms at the basis of the EM field interaction leading to biomedical applications, one needs also to know the field strength at the microscopic scale to establish a quantitative relation between the field and the observed effect. Aim of this work is to establish the shared scientific bases of microdosimetry and main results, and to identify the needs for future research. In particular, a recent important improvement is represented by taking into account the irregularly shaped cells and internal organelles.

W3-6 [17:00]
Characterization of the interaction between pulsed electric fields and live cells by confocal Raman microspectroscopy
Lluis M. Mir¹, Antoine Azan¹, Valérie Untereiner²,³, Caterina Merla¹,⁴, Cyril Gobinet², Marie Breton¹, Ali Tfayli⁵ & Olivier Piot²,³
¹Vectorology and Anticancer Therapies, UMR 8203 CNRS, Univ. Paris-Sud, Gustave Roussy, Université Paris-Saclay, Villejuif, France, 94805
²MeDIAN, Biophotonics and Technologies for Health, MEDyC, UMR 7369 CNRS, University of Reims Champagne-Ardenne, Reims, France, 51096
³Cellular and Tissular Imaging Platform PICT, Faculty of Pharmacy, University of Reims Champagne-Ardenne, Reims, France, 51096
⁴Laboratorio Tecnologie Biomediche, ENEA, C.R. Casaccia, Roma, Italy, 00123
⁵Laboratory of Biomedical Imaging and Therapies, ENEA, Laboratory of Biomedical Imaging and Therapies, ENEA, C.R. Casaccia, Roma, Italy, 00123
Part of the workshop on "Advanced approaches for analysis of biological effects of pulsed electric fields", this presentation deals with the characterization of the interaction between pulsed electric fields and live cells by confocal Raman microspectroscopy.

W3-7 [17:20]

A wide-field CARS setup for spectroscopy under electropulsation of biological media

Caterina Merla¹, ², Brigitte Attal-Trétout³, Michaël Scherman³, Martina Nardoni⁴, Amina Ghorbel¹, Micaela Liberti⁵, Francesca Apollonio⁶, Stefania Petralito⁴ & Lluis M. Mir¹

¹CNRS UMR 8203, Gustave Roussy, Univ. Paris-Sud, Université Paris Saclay, Villejuif, France, 94805
²ENEA SSPT Division of Health Protection Technologies, Rome, Italy, 00123
³Onera BP 80100, Palaiseau Cedex, France, 91123
⁴Department of Pharmaceutical Technologies, "Sapienza" University of Rome, Rome, Italy, 00195
⁵Department of Information Engineering Electronic and Telecommunications, "Sapienza" University of Rome, Rome, Italy, 00184

To understand basic phenomena of electropulsation of biological media, a new experimental setup is used. It combines a wide field CARS microscope with a wide band coplanar waveguide. This setup allows to acquire CARS hyper-spectra of specific Raman bands of small unilateral vesicles (i.e. liposomes) and cells contemporary exposed to high amplitude ultra-short (microsecond or nanosecond duration) electric pulses. Being the physico-chemical bases of electroporation still debated, our setup allows the experimental assessment of the role of water molecules and phospholipids during and after the delivery of the electric pulses.

W3-8 [17:40]

Terahertz spectroscopy to monitor the leakage of molecules from live cells exposed to pulsed electric fields: comparison to fluorescent video-microscopy experiments

Tomás García-Sánchez¹, Antoine Azan¹, Guilhem Gallot² & Lluis M. Mir¹

¹Vectorology and Anticancer Therapies, UMR 8203, CNRS, Univ. Paris-Sud, Gustave Roussy, Université Paris-Saclay, 94805 Villejuif, France
²Laboratoire d’Optique et Biosciences, Ecole Polytechnique, UMR7645, CNRS, Route de Saclay, 91128, Palaiseau, France

For the first time, a Terahertz-Attenuated Total Reflection (THz-ATR) experimental device was used to investigate the effects of electroporation electric fields on live cells. The THz signal, generated and detected by a classical Terahertz time-domain spectroscopy (THz-TDS) setup, was compared to fluorescence microscopy data (Yo-Pro1 uptake).
S14-1 [16:30] STUDENT PAPER

RF exposure in the vicinity of small cell base stations
Thomas Kopacz¹, Sascha Schiessl¹, Christian Bornkessel², Matthias Hein² & Dirk Heberling¹
¹Institute of High Frequency Technology, RWTH Aachen University, Aachen, Germany
²RF & Microwave Research Laboratory, Thuringian Center of Innovation in Mobility, Technische Universität Ilmenau, Ilmenau, Germany

Keywords: Dosimetry (measurements), RF/Microwaves, Completed (unpublished)
Presented by: Thomas Kopacz

In the course of the evolution of mobile radio networks and the increasing high-capacity needs, operators have started to deploy small-cell base stations. To account for possible concerns about the RF exposure, we investigate the exposure for two types of small-cell base stations embedded into street furniture: 1. A phone box (PB) and 2. a service-area interface (SAI). We have found that in public areas the highest exposure amounts to 17.9 % of the electrical field reference level (%E) for the PB and 53.0 %E for the SAI. Downlink exposure and uplink transmit power have been assessed for typical and worst-case user scenarios in the vicinity of the SAI proving that higher downlink field strength leads to lower uplink transmit power values.

S14-2 [16:45] STUDENT PAPER

Human exposure assessment in indoor environments using a 60 GHz personal exposure meter
Reza Aminzadeh¹, Abdou Khadir Fall², Jerome Sol², Arno Thielens¹, ³, Philippe Besnier², Maxim Zhadobov⁴, Nele De Geeter⁵, Prakash Parappurath Vasudevan¹, ⁶, Luc Dupré⁵, Roel Van Holen⁶, Luc Martens¹ & Wout Joseph¹
¹Dept. of Information Technology (INTEC), Ghent University/imec, Ghent, Belgium
²Institute of Electronics and Telecommunications of Rennes, INSA of Rennes, Rennes, France
³Department of Electrical Engineering and Computer Science, University of California, Berkeley, USA
⁴Institute of Electronics and Telecommunications of Rennes, University of Rennes 1, Rennes, France
⁵Dept. of Electrical Energy, Systems and Automation (EESA), Ghent University, Ghent, Belgium
⁶Dept. of Electronics and Information Systems (Elis), Ghent University/imec, Ghent, Belgium

Keywords: Dosimetry (measurements), RF/Microwaves, Completed (unpublished)
Presented by: Reza Aminzadeh

This paper presents the first mm-wave personal exposure meter (mm-PEM) to assess human exposure to the 5th generation of mobile networks (5G) in indoor environments. The mm-PEM consists of 9 elements of an antenna array and is calibrated on a skin-equivalent phantom in a reverberation chamber at 60 GHz. The designed mm-PEM has a response of 1.043 (0.17 dB) at 60 GHz which is very close to the desired response of a PEM i.e. 1 (0 dB). The mm-PEM measured an incident power density of 41 mW.m⁻² at 60 GHz for an input power of 1 mW in the empty chamber.

S14-3 [17:00] STUDENT PAPER

Microenvironmental personal and head exposure measurements of radio-frequency electromagnetic fields in Melbourne, Australia
Arno Thielens¹, ², Matthias Van Den Bossche², Christopher Brzozek³, Chhavi Bhatt³, Michael Abramson³, Geza Benke³, Luc Martens² & Wout Joseph²
The aim of this study was to simultaneously measure personal radio frequency-electromagnetic fields (RF-EMFs) exposure using two measurement devices. A body-worn personal exposimeter and a head-worn personal distributed exposimeter were used for measuring body and head exposures, respectively, in 15 microenvironments in Melbourne. The summary statistics obtained for total RF-EMF exposure showed a high representativeness ($r^2 > 0.87$ for two paths in the same area). The results obtained during simultaneous measurements using the two devices showed high correlations: $r^2 = 0.94$ for the median along the measured paths.

S14-4 [17:15]

Long-term spatio-temporal RF-EMF exposure assessment in sensor network
Sam Aerts1, Joe Wiart2, Luc Martens1 & Wout Joseph1

1Department of Information Technology, Ghent University / imec, Ghent, Belgium, 9052

2LTCI, Chaire C2m, Télécom ParisTech, Institut Mines-Télécom, Paris, France, 75013

Keywords: Dosimetry (measurements), RF/Microwaves, Completed (published)

Presented by: Sam Aerts

Our exposure to environmental radiofrequency (RF) electromagnetic fields (EMF) at a given location is inherently dynamic due to the constantly-changing nature of both our environment as well as the telecommunications networks present in it. More than a year of measurement data was collected in a fixed low-cost urban exposimeter network and analysed to build a spatio-temporal surrogate model of the exposure to environmental telecommunications signals. We observed that by taking into account the moment of the measurement in the modelling the accuracy of the resulting surrogate model in the area under study was improved by up to 50% compared to models that neglected the daily temporal variability of the RF signals.

S14-5 [17:30]

Personal Exposimeter to monitor EMF Up-Link exposure from daily-usages of mobile phone
Serge Bories1, David Dassonville1, Sébastien Brulais1, Saifeddine Aloui1, Yenny Pinto2, Taghrid Mazloum2 & Joe Wiart2

1CEA LETI Minatc Campus, Grenoble, France

2Télécom ParisTech, Paris, France

Keywords: Dosimetry (measurements), RF/Microwaves, Completed (unpublished)

Presented by: Serge Bories

The cellular Up-Link (UL) exposure has been identified as the main contributor for the mobile phone user. However current personal exposimeters don’t estimate it properly because they don’t assess the real transmit (Tx) power and the distance between this EMF source and the user’s body. A novel non-invasive system monitors both of these parameters (power, usage) during daily usages. It is integrated on a shell around the user’s mobile. Covering 5 cellular UL frequency bands, the probe is able to log the Tx RF power from 100 Hz sampling. The usage estimation is assessed through three small sensors worn in the user pockets. The variations of the Tx power at different time-scale are demonstrated.

S14-6 [17:45]

Characterization of the exposure due to smart-home devices and other residential RF sources
Sam Aerts1, Leen Verloock1, Matthias Van Den Bossche1, Ximena Vergara2, Luc Martens1 & Wout Joseph1

1Department of Information Technology, Ghent University / imec, Ghent, Belgium, 9052

2Télécom ParisTech, Paris, France

Keywords: Epidemiology, RF/Microwaves, Completed (published)

Presented by: Wout Joseph
Current Internet-of-Things (IoT) trends such as home automation and smart metering may raise concerns about the human exposure to radiofrequency (RF) electromagnetic fields (EMF) due to new wireless devices installed in residences. As signals transmitted by smart devices are usually non-continuous, a new measurement methodology was developed to assess their exposure levels, using the spectrogram mode of a spectrum analyzer to capture changes in frequency and/or amplitude of the assessed signals over time. Here, the assessment of 94 residential RF sources is presented. It was found that, in the smart home, wireless access points, smartphones, and other personal communication devices continue to represent the bulk of our RF-EMF exposure.
P4-1 [08:30]

Advances in electroporation and activation of cells by nanosecond stimuli

Andrei Pakhomov*1

1Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA

Biographical sketch

Andrei Pakhomov is a Research Professor and an Interim Director of the Center for Bioelectrics. He has broad interest in nanosecond pulsed electric fields (nsPEF), from molecular and cellular mechanisms to prospective applications in cancer ablation, deep tissue stimulation, and defibrillation. He leads research on nanoelectropore opening and life cycle, conduction properties, cell stimulation and activation, membrane repair, and cell death mechanisms and pathways. Pakhomov’s lab recently uncovered bipolar cancellation, a phenomenon that challenges existing electroporation paradigms and may enable targeted remote biostimulation. His ongoing research is supported by a multi-university MURI grant from AFOSR and an RO1 grant from NIH.

Five relevant publications

Abstract

Early research into nsPEF bioeffects focused primarily on cell killing and cancer ablation. More recently, interest shifted towards utilizing unique properties of nsPEF for activation and stimulation, including targeted stimulation remotely from electrodes. Cell activation is accomplished by nanoelectroporation and Ca2+ mobilization, which mimics opening of Ca2+ channels even in cells which do not express them. If voltage-gated channels are present, they can be activated by either membrane depolarization due to nanoelectroporation or directly, without membrane injury. However, the latter mechanism is challenging since stimuli are much shorter than the time needed for translocation of the molecular voltage sensor domain which opens the channel. On many occasions, stimulation thresholds were equal to or above electroporation thresholds. Nonetheless, we accomplished peripheral nerve stimulation by 10-ns PEF without observable membrane injury, even after 50,000 stimulation cycles. This stimulation is subject to strong bipolar cancellation, which (a) can be utilized to reveal ion channel kinetics, (b) explains, at least in part, why emitted microwaves and RF have low biological efficiency even at high peak power, and (3) underlies a new paradigm of science-based targeted remote stimulation, with broad medical applications.
P4-2 [09:00]

Unraveling new key molecular level aspects using computational chemistry
Mounir Tarek

Centre National de La Recherche Scientifique (CNRS), Université de Lorraine, Nancy, France

Biographical sketch

Mounir Tarek is a Senior Research Director at the CNRS-Université de Lorraine. His research involves the use of computational chemistry methods to study membranes, proteins, ion channels and membrane transport proteins. Over the last few years, he studied many aspects of electroporation of cell membranes subject to high electric fields. M. Tarek is a founding member and a member of the Scientific Council of the European Associated Laboratory EBAM ‘Pulsed Electric Fields Applications in Biology and Medicine’.

Five relevant publications

Abstract

The application of short and intense electric pulses enables to transiently alter the properties of cell membranes, making them permeable to a wide range of chemical species. This phenomenon is routinely used in medical applications as well in biotechnology and industrial processing. Most investigations to date of the processes involved have focused on the ability of intense electric fields to create pores within the lipid bilayers, allowing us to better understand and control the phenomenon termed “electroporation”. Our knowledge on the other hand, about the chemical processes enhanced as a consequence of the application of electric fields to cells is still sketchy. In this contribution we harness the capabilities of computational resources and the predictive power of advanced atomistic and quantum level molecular dynamics techniques to decipher key steps in several chemical and biophysical processes occurring during and following Electric field stimulations of cell membranes. We show that under low-voltage conditions, and predict that under sub-nanosecond pulse electroporation conditions, peroxidation of model cell membranes by potent reactive oxygen species (OH• and OOH•) is significantly enhanced. We quantify the permeability of the peroxidized membranes to a host of species including ions and molecules, to demonstrate that electrically mediated chemical effects may play a significant role in several processes following exposure of cells to high electric fields. We discuss the relevance of these effects for cells subject to radio-frequency electromagnetic fields (RF-EMF) as well as for excitable cells subject to electro-stimulation.
S15-1 [09:30]

NEUROMAN: Reference computational human anatomical models for therapeutic peripheral nerve stimulation and safety investigations
Bryn Lloyd¹, Antonino Mario Cassara¹, Silvia Farcito¹, Esra Neufeld¹, Jin Seo Park⁴, Beom Sun Chung², Min Suk Chung³ & Niels Kuster¹, ²
¹IT’IS Foundation, Zürich, Switzerland, 8004
²ETH Zürich, Zürich, Switzerland, 8092
³Ajou University, Suwon, Korea, 16499
⁴Dongguk University, Gyeongju, Korea, 38046
Keywords: Dosimetry (computational), ELF/LF, Work in Progress
Presented by: Bryn Lloyd

Therapeutic electrical stimulation of peripheral nerves is a promising technique with a wide range of treatment applications. At the same time, the trend towards stronger magnetic fields and/or faster gradient switching in magnetic resonance imaging poses safety risks for patients, e.g., due to tissue heating and unwanted neurostimulation. To this end, we are developing reference human anatomical models with unprecedented details in the peripheral nervous system, connectivity to organs and muscles, and functionalized with compartmental nerve models to investigate interactions with neuronal electrophysiology. We employ these phantoms to investigate current safety guidelines.

S16-1 [09:30]

Understanding and overcoming ‘Risk Communication Traps’
Frederik Freudenstein¹, ², ³, ⁴, Peter Wiedemann¹, ², ³, ⁴, Rodney Croft¹, ², ³, ⁴ & Sarah Loughran¹, ², ³, ⁴
¹Australian Centre for Electromagnetic Bioeffects Research, Wollongong, Australia, 2500
²University of Wollongong, School of Psychology, Wollongong, Australia, 2500
³Illawarra Health and Medical Research Institute, Wollongong, Australia, 2500
⁴Centre for Population Health Research on Electromagnetic Energy, Monash Uni, Melbourne, Australia, 3800
Keywords: Public Health Policy, RF/Microwaves, Work in Progress
Presented by: Frederik Freudenstein

In the presented research we analyse the effects of a special class of problems, called ‘risk communication traps’. These traps hinder the proper understanding of risk assessments, leading to misunderstandings of both the very existence of and magnitude of a risk. We focus on a set of five traps related to RF EMF (radio frequency electromagnetic fields) risk assessments. As an example, research on the ‘framing trap’ is presented. This trap becomes relevant to risk communication when hazard identifications (being just the fist step in risk assessment) are misunderstood as risk assessments. An online survey investigates wether this effects RF EMF risk perception and higher confidence that cancer risks will occur from cell phone usage.
Presented by: Luca Giaccone

LF dosimetry is commonly assessed by evaluating the electric field in the human body using the scalar potential finite difference method. This method is effective only when the sources of the magnetic field are completely known and the magnetic vector potential can be analytically computed. This paper presents a rigorous method to characterize the source term when only the magnetic flux density is available at discrete points. The proposed method is validated and also proved to be useful and effective when applied to a real-world scenario, where the magnetic flux density is measured in proximity of a power transformer.

S15-3 [10:00]

Estimation of electric fields and eddy currents induced by an AC electromagnetic field in human subjects

Hideyuki Okano¹, Ilkka Laakso², Tsukasa Kondo³, Hiromi Ishiwata² & Keiichi Watanuki¹, ³, ⁵

¹Advanced Institute of Innovative Technology, Saitama University, Saitama, Japan, 338-8570
²Department of Electrical Engineering and Automation, Aalto University, Espoo, Finland, 02150
³Graduate School of Science and Engineering, Saitama University, Saitama, Japan, 338-8570
⁴Soken Medical Co., Ltd., Tokyo, Japan, 171-0033
⁵Brain and Body System Science Institute, Saitama University, Saitama, Japan, 338-8570

Keywords: Dosimetry (computational), ELF/LF, Work in Progress

Presented by: Hideyuki Okano

This study focuses on computational estimation of the induced electric fields (EFs) and eddy currents induced by an AC electromagnetic field (EMF; 50 Hz, B_max 180 mT) in human subjects. The induced EFs were numerically calculated using the finite-element method. The left forearm was exposed to heterogeneous EMF generated by double coils. For the EF intensity at the skin surface as well as in muscle and tendons, the simulation results indicated that the highest EF was located in the regions in and around the first coil. The EF intensity at the artery was higher near the second coil than the first coil. The present numerical analysis may contribute to the understanding of physiological mechanisms of AC EMFs for hemodynamic responses.

S16-3 [10:00]

Quarterly newsletters synthesizing research for policy and society: an innovative approach piloted by the interdisciplinary Swiss expert group on electromagnetic fields and non-ionising radiation (BERENIS)

Stefan Dongus¹, Peter Achermann², Jürg Fröhlich³, Jürg Kesselring⁴, Meike Mevissen⁵, David Schuermann⁶, Edith Steiner⁷ & Martin Röösli¹

¹Environmental Exposures and Health Unit, Swiss Tropical and Public Health Institute, Basel, Switzerland, 4002
²Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland, 8057
³Fields at Work GmbH, Zurich, Switzerland, 8006
⁴Rehabilitation Centre, Clinics of Valens, Valens, Switzerland, 7317
⁵Vet-Pharmacology & Toxicology, Vetsuisse Faculty, University of Bern, Bern, Switzerland, 3012
⁶Department of Biomedicine, University of Basel, Basel, Switzerland, 4058
⁷Ärztinnen und Ärzte für Umweltschutz, Basel, Switzerland, 4019

Keywords: Public Health Policy, All Frequencies, Work in Progress

Presented by: Stefan Dongus

In 2014, the interdisciplinary Swiss expert group on electromagnetic fields and non-ionising radiation (BERENIS) started to continuously assess newly published human experimental and epidemiological studies, mammalian in vivo and in vitro studies, as well as exposure and dosimetry studies. Based on defined criteria, BERNESIS identifies publications most relevant for health risk. During the 3-years pilot phase of BERNESIS, ten quarterly newsletters have been published, providing short summaries and evaluations of
S15-4 [10:15]

Extended numerical modelling of cortical electrostimulation

Jose Gomez-Tames¹ & Akimasa Hirata¹
¹Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya, Japan, 466-8555

Keywords: Dosimetry (computational), ELF/LF, Review, Commentary, Recommendation, Evaluation

Presented by: Jose Gomez-Tames

Computational models have been used to understand local brain stimulation. However, no a computational model revealing the stimulation process from the cortex to MNs has not yet been proposed. The aim of the current study was to develop a corticomotoneuronal (CMN) model to investigate intraoperative stimulation during surgery.

S16-4 [10:15]

Revision of IEEE Standards C95.1-2005 and C95.6-2002

C. K. Chou¹, Ron Petersen², Kenneth Foster³, Akimasa Hirata⁴, Marvin Ziskin⁵, J. Patrick Reilly⁶, Richard Tell⁷, Antonio Faroñ⁸, B. Jon Klauenberg⁹, Robert Kavet¹⁰, Kevin Graf¹¹, Robert Cleveland¹², Artnarong Thansandote¹³, Jerrold Bushberg¹⁴, William Bailey¹⁵, John Osepchuk¹⁶, Alexandre Legros¹⁷, Kenichi Yamazaki¹⁸ & Ralf Bodemann¹⁹
¹C-K. Chou Consulting, Dublin, CA, USA, 94568
²R C Petersen Associates, LLC, Bedminster, NJ, USA, 07921
³University of Pennsylvania, Philadelphia, PA, USA, 19104
⁴Nagoya Institute of Technology, Nagoya, Japan
⁵Temple University Medical School, Philadelphia, PA, USA, 19140
⁶Metatec Associates, Silver Spring, MD, USA, 20904
⁷Richard Tell Associates, Inc, Madison, AL, USA, 35756
⁸Motorola Solutions, Inc., Fort Lauderdale, FL, USA, 33322
⁹Airman Systems Directorate, Fort Sam Houston, TX, USA, 78234
¹⁰Kavet Consulting LLC, Oakland, CA, USA, 94619
¹¹Exponent Inc., Menlo Park, CA, USA, 94025
¹²EMF Consulting, Portland, OR, USA, 97219
¹³Health Canada (retired), Ottawa, Ontario, Canada, K1A 1C1
¹⁴University of California, Davis Health, Sacramento, CA, USA, 95817
¹⁵Exponent Inc., Bowie, MD, USA, 20715
¹⁶Full Spectrum Consulting, Concord, MA, USA, 01742
¹⁷Lawson Health Research Institute, London, Ontario, Canada
¹⁸Central Research Institute of Electric Power Industry, Yokosuka, Japan
¹⁹Siemens AG, Munich, Germany, D-81739

Keywords: Standards, All Frequencies, Completed (unpublished)

Presented by: C-K. Chou

C95.1 was first published as a radiofrequency (RF) protection standard in 1966 by the United States of America Standards Institute. Major

55 publications. Topics of particular relevance identified by BERENIS include 1) oxidative stress, 2) cryptochrome as EMF sensor, 3) cancer promotion, and 4) neurodegeneration.
revisions of C95.1 were published in 1974, 1982, 1991, 1999, 2005, and 2014. This latest revision, a merging and updating of IEEE Std C95.1-2005 (3 kHz – 300 GHz) and C95.6-2002 (0 – 3 kHz), also relies upon C95.1-2345-2014 (military workplaces and personnel protection), which also combined and updated C95.1 and C95.6. In this presentation, similarities and differences of this draft revision with previous standards are discussed. New limits for exposures between 6 GHz and 300 GHz are proposed based on thermal modeling studies. The current draft revision is presently undergoing IEEE voting procedures.

S15-5 [10:30]

Patient semi-specific computational modeling of electromagnetic stimulation applied to regenerative treatments in acute ischemic stroke
Micol Colella¹, Francesca Camera¹, Fioravante Capone², Stefania Setti³, Ruggero Cadossi³, Francesca Apollonio¹, Vincenzo Di Lazzaro² & Micaela Liberti¹
¹Department of Information Engineering, Electronics and Telecommunications, University of Rome “La Sapienza”, Rome, Italy
²Unit of Neurology Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
³IGEA Biophysics Laboratory, Carpi, Italy

Keywords: Dosimetry (computational), Pulsed, Completed (unpublished)
Presented by: Micaela Liberti

Specific pulsed electromagnetic field (PEMF) have been shown to be effective in producing changes in the excitability of human cerebral cortex and to have neuroprotective potential on animal models of brain ischemia and on in-vitro studies. For this reason, the interest of validating the PEMF stimulation as non-invasive, safe and effective tool to promote recovery in acute ischemic stroke patients is spreading. In such a context, an accurate dosimetry that can be patient semi-specific and, so, describe the electrical and magnetic quantities induced in each treatment, is clearly a powerful tool to understand brain magnetic stimulation and the related interaction mechanisms with biological tissues.

S16-5 [10:30]

Safety in electromagnetic fields - Simplifying risk assessments using exposure zones
Peter Jeschke¹, Hannah Heinrich², Claudine Neumann³, Ingo Bömmels³, Stephan Joosten⁴, Mathias Hoffmann⁵, Hannelore Neuschulz¹ & Erik Romanus¹
¹Physical Agents, Federal Institute for Occupational Safety and Health, Dortmund, Germany, 44149
²2h-engineering & -research, Hausen, Germany, 91353
³NIR - EMF, DGUV Institute for Occupational Safety and Health, St. Augustin, Germany, 53757
⁴EMF, German Social Accident Insurance, Cologne, Germany, 50960
⁵AB 35: Radiation Protection and NIR, NLWKN, Hildesheim, Germany, 31135

Keywords: Occupational, All Frequencies, Work in Progress
Presented by: Peter Jeschke

The European Directive 2013/35/EU has been implemented into German legislation by the EMF Ordinance. To improve the comprehensibility and usability of the EMF Ordinance, Technical Rules are currently developed to assist employers, particularly in small and medium sized enterprises, to implement state of the art occupational safety and health measures. Using the information and measures given in the Technical Rules ensure compliance with the EMF Ordinance. “Exposure Zones”, which link exposure conditions at workplaces with Action Levels and associated protective measures, provide a simple and guided approach for employers to fulfil the requirements of the EMF Ordinance.
S15-6 [10:45]

Development of the 0.16THz in vivo exposure system for evaluating acute ocular damages with the high power gyrotron electromagnetic wave source

Yukihisa Suzuki¹, Masami Kojima², Takafumi Tasaki², Yoshinori Tatematsu³, Masafumi Fukunari³, Maya Mizuno⁴, Kensuke Sasaki⁴, Soichi Watanabe⁴, Masao Taki¹, Masahiko Tani³ & Hiroshi Sasaki²

¹Tokyo Metropolitan University, Tokyo, Japan, 192-0397
²Kanazawa Medical University, Ishikawa, Japan, 920-0265
³University of Fukui, Fukui, Japan, 910-8507
⁴National Institute of Information and Communications Technology, Tokyo, Japan, 184-8795

Keywords: In vivo, THz, Work in Progress

Presented by: Yukihisa Suzuki

In this study, a new in vivo exposure system for 0.16 THz exposure has developed to investigate the threshold level of power density inducing thermal ocular damage. To realize this system, the gyrotron FU CW GV was used for the 0.16THz high power EM wave source. When the irradiated power density was 500mW/cm², the maximum temperature elevation at 6min from the onset of exposure became 26.4°C and 19.8°C for an agar phantom and a cornea of rabbit eye, respectively. Consequently, we have achieved the sufficient temperature elevation to observe acute cornea damages due to the thermal effect at 0.16THz

S16-6 [10:45]

An analytical model to derive safety limits for pulsed/modulated 5G radiation exposure

Esra Neufeld¹ & Niels Kuster¹, ²

¹IT’IS Foundation for Research on Information Technologies in Society, Zürich, Switzerland, 8004
²Swiss Federal Institute of Technology (ETHZ), Zürich, Switzerland, 8092

Keywords: Standards, RF/Microwaves, Completed (published)

Presented by: Niels Kuster

5G technology foresees data transmission in short bursts. Signals with high peak-to-average ratios can lead to critical tissue heating even when time- and area-averaged power density values respect current safety guidelines. An analytical model of heating due to plane-wave and localized pulsed exposure was developed and has been used in combination with thermal dose limits to derive propositions for the adaptation of current standards.

Coffee Break
Friday June 29, 2018 • 11:00 - 11:30
Foyer

Session: P5
Plenary 5: Hot Topic
Friday June 29, 2018 • 11:30 - 12:30
Emerald
Chairs: Martin Röösli & Isabelle Deltour

P5-1 [11:30]

Does amount of mobile phone use affect headache, tinnitus and hearing? Results from the Cohort Study of Mobile Phone use and Health (COSMOS)
Anssi Auvinen¹

¹Faculty of Social Sciences, University of Tampere, Tampere, Finland
<table>
<thead>
<tr>
<th>Event</th>
<th>Date</th>
<th>Time</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student Awards</td>
<td>Friday June 29, 2018</td>
<td>12:30 - 13:30</td>
<td>Emerald</td>
</tr>
<tr>
<td>Closing ceremony</td>
<td>Friday June 29, 2018</td>
<td>13:30 - 14:00</td>
<td>Emerald</td>
</tr>
<tr>
<td>Session: M5 BEMS Board Meeting</td>
<td>Friday June 29, 2018</td>
<td>14:30 - 18:00</td>
<td>Pharos</td>
</tr>
<tr>
<td>Session: M6 EBEA Council Meeting</td>
<td>Friday June 29, 2018</td>
<td>14:30 - 18:00</td>
<td>Adria</td>
</tr>
</tbody>
</table>
The influence of electromagnetic field from microwave range on honeybees – acoustic and thermal analysis
Pawel Bienkowski¹, Pawel Cala¹, Urszula Libal², Piotr Nowakowski³, Przemyslaw Plaskota⁴, Krzysztof Rudno-Rudzinski⁴ & Bartlomiej Zubrzak¹
¹Department of Telecommunications and Teleinformatics, Wroclaw University of Science and Technology, Wroclaw, Poland, 50-370
²Department of Signal Processing Systems, Wroclaw University of Science and Technology, Wroclaw, Poland, 50-370
³Institute of Animal Breeding, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland, 50-370
⁴Department of Acoustics and Multimedia, Wroclaw University of Science and Technology, Wroclaw, Poland, 50-370
Keywords: Behavioural, RF/Microwaves, Work in Progress
Presented by: Pawel Bienkowski

The paper presents the results of research on the influence of the electromagnetic field from microwave range on the population of honeybees, analyzing changes in the sounds from hives and changes in temperatures in the hive.

Extremely low frequency-electromagnetic radiation deteriorated the sleep reduction in Drosophila melanogaster under heat stress
Xiaomei Huang¹, 2, Ziyan Zhang¹, Hongying Zhang¹, 2, Chuanjun Yang¹, Yongyan Sun¹, 2, Chao Tang¹ & Hui Yu¹
¹Key Laboratory of Urban Environment and Health, Institute of Urban Environment (IUE), Xiamen, China, 361021
²Chinese Academy of Sciences, Beijing, China, 100049
Keywords: Behavioural, ELF/LF, Completed (unpublished)
Presented by: Xiaomei Huang

The coupling effects of heat stress and extremely low frequency-electromagnetic field (ELF-EMF, 50 Hz, 3 mT) on sleep and activity were studied using Drosophila (wild-type Canton-Special (CS) and mutant W1118 flies) as a model. The mRNA expressions of circadian clock genes, neurotransmitters related genes, as well as important neurotransmitters were analyzed. Result showed that ELF-EMF deteriorated the sleep reduction in Drosophila under heat stress.

Biological tissue characterizations by HF band electromagnetic field
Kazuyuki Saito¹ & Takashi Yakubo¹
¹Chiba University, Chiba, Japan, 2638522
Keywords: Clinical (diagnostics), IF, Work in Progress
Presented by: Kazuyuki Saito

Characteristics of biological tissues were considered by measurement of their electrical properties in the high frequency (HF) band. “Detection of tissue coagulation” and “inspection of tissue freshness” were introduced as examples.
PA-7 [14:30]

Is it biologically plausible to use millimetre and terahertz waves for therapeutic applications?
Mats-Olof Mattsson1, Olga Zeni2 & Myrtill Simko1
1SciProof International AB, Östersund, Sweden, 83132
2CNR-IREA, Naples, Italy, 80124

Keywords: Clinical (therapy), THz, Completed (unpublished)
Presented by: Mats-Olof Mattsson

There are many diagnostic and therapeutic situations where presently available tools (physical, chemical, biological) are insufficient. The search for improved approaches includes investigations of the usefulness of millimetre (MMW) and terahertz waves (THz). Here we investigated if published in vivo and in vitro studies provide support for the use of these waveforms in therapeutic applications, during conditions that do not cause tissue heating. Our conclusion is that there is some evidence for that both MMW and THz can influence biological systems in a manner that is not obviously driven by tissue heating. However, the number of relevant studies is very low which limits the drawing of any far-reaching conclusions.

PA-9 [14:30]
WITHDRAWN

PA-11 [14:30]

QGIS calculation method for evaluation of ELF electromagnetic field exposure of general public due to overhead power lines
Wout Joseph1, Kris Vanhecke1, Christophe Geuzaine2, Leen Verloo1, Matthias Van Den Bossche1, Mart Verlaak3, Michel Goethals3 & Luc Martens1
1INTEC, Ghent University/IMEC, Ghent, Belgium, 9052
2Electrical Engineering and Computer Science, University of Liege, Liege, Belgium, 4000
3Bureau for Environment and Spatial Development – Flanders, Departemant Omgeving, Brussels, Belgium, 1000

Keywords: Dosimetry (computational), ELF/LF, Completed (published)
Presented by: Wout Joseph

A calculation model (applying Gmsh and GetDP) and QGIS plug-in for simulating magnetic field contours of overhead power lines is presented. This model enables the estimation of the ELF exposure of the general population, relevant to environmental and urban planning, and can take into account future changes in the power grid. Simulations are validated with measurements and demonstrated for the region of Flanders, Belgium.

PA-13 [14:30]

Dielectric parameters for THz study of biological entities
Alireza Lajevardipour1, Zoltan Vilagosh1, Andrew Wood1
1Swinburne University of Technology, Melbourne, Australia, 3122
2Australian Centre for Electromagnetic Bioeffects Research, Melbourne, Australia

Keywords: Dosimetry (computational), THz, Completed (published)
Presented by: Alireza Lajevardipour

In order to accurately predict THz energy absorption in skin or microbial entities, well-known simulation method FDTD can be employed. The accuracy of results is depend on precision of dielectric parameters in the range 0.1 – 100 THz. The Gabriel database uses best-fit parameters in up to four Debye terms, to predict dielectric parameters up to 0.1 THz. Above that, the Debye approach to predicting dielectric values is inadequate. In the case of lipid, there are no specific data sets available, however, analogous data for fat and oil is available. The lack of experimental data for
lipids, is exacerbated by some of absorption data being reported in arbitrary units.

PA-15 [14:30]

An investigation of key factors for the simplified compliance assessment of a millimeter-wave base station
Young Seung Lee¹, Haeng-Seon Lee², Sangbong Jeon¹ & Hyung Do Choi¹
¹Radio & Satellite Research Division, Electronics and Telecommunications Research Institute, Daejeon, Korea, 34129
²Department of Electronic Engineering, Sogang University, Seoul, Korea, 04107
Keywords: Dosimetry (computational), RF/Microwaves, Work in Progress
Presented by: Sangbong Jeon

This study presents several key factors for the convenient compliance test of a millimeter-wave (mmWave) base station (BS). By using the ray-tracing simulation, we analyzed the power density (PD) output profiles from a mmWave BS installed at an urban area. Several important points which have a significant influence on the maximum PD levels are found from numerical simulations. The derived key factors indicate that the convenient compliance assessment of a mmWave BS can be performed based on the simplified model of the installation site instead of the present mandatory procedure at the actual complex environmental profile.

PA-17 [14:30]

Numerical evaluation of SAR and temperature increase due to dipole antenna in human fetus models representing actual fetal growth
Tomoaki Nagaoka¹ & Soichi Watanabe¹
¹Electromagnetic Compatibility Laboratory, National Institute of Information and Communications Technology, Tokyo, Japan, 184-8795
Keywords: Dosimetry (computational), RF/Microwaves, Work in Progress
Presented by: Tomoaki Nagaoka

In this study, we estimate the specific absorption rate (SAR) and temperature increase in human fetuses exposed to EM waves from a half-wavelength dipole antenna at 900 MHz and 2 GHz irradiated around the abdomen of women using pregnant female models including fetuses representing actual fetal growth. We confirmed that the peak 10g-averaged SAR in the fetus tends to slightly increase with fetal growth and the peak 10g-averaged SAR in the fetus does not exceed the SAR in the maternal body. We also found that the core temperature increase in the fetus is sufficiently smaller than the peak fetal temperature increase.

PA-19 [14:30]

Electromagnetic field exposure level using equivalent model of actual wireless power transfer system
SangWook Park¹, DongGeon Kim¹ & BeomJin Choi¹
¹EMI/EMC R&D Center, Korea Automotive Technology Institute, Cheonan-si, Korea, 330-912
Keywords: Dosimetry (computational), ELF/LF, Work in Progress
Presented by: SangWook Park

Accurate dosimetry for a real wireless power transfer system requires an accurate description of the field formed by the system. In particular, the electromagnetic field depends on factors such as the construction of the transmitting and receiving coils, the circuit configuration, the input source of the front end of the transmitting coil, and the input impedance of the rear end of receiving coil. However, both circuit and electromagnetic simulations need to be performed to analyze the entire system, which is a difficult task. In order to overcome this difficulty, a method using an equivalent circuit model is proposed.
PA-21 [14:30] STUDENT PAPER

Numerical determination of the risk of cardiac ventricular fibrillation in humans from body currents with frequencies up to 1 MHz using outcomes of animal studies

Pia Schneeweiss¹, Tobias Theiler¹, Kai Jagielski¹ & Dominik Stunder¹
¹Research Center for Bioelectromagnetic Interaction (femu), RWTH Aachen University, Aachen, Germany, 52074

Keywords: Dosimetry (computational), All Frequencies, Work in Progress
Presented by: Pia Schneeweiss

Cardiac ventricular fibrillation (CVF) is a potential cause of death following electrical accidents occurring when the electrical activity of the heart is disrupted. In order to determine thresholds for CVF, cadaver and animal studies were carried out in the past, which are however limited e.g. in tissue’s electric properties and the utilized probes properties. Currently executed simulations with high resolution anatomical body models traversed by body currents with frequencies up to 1 MHz will be used for the derivation of CVF thresholds and can therefore help to prevent injuries caused by electrical currents in the future.

PA-23 [14:30] STUDENT PAPER

Industrial indoor massive MIMO human EM-exposure evaluation
Sergei Shikhantsov¹, Arno Thielen¹,², Gunter Vermeeren¹, Emmeric Tanghe¹, Piet Demeester¹, Guy Torfs¹, Luc Martens¹ & Wout Joseph¹
¹Department of Information Technology, Ghent University/IMEC, Ghent, Belgium, 9000
²Department of Electrical Engineering and Computer Sciences, University of California Berkeley, Berkeley, CA, USA, 94704

Keywords: Dosimetry (computational), RF/Microwaves, Work in Progress
Presented by: Sergei Shikhantsov

We present a numerical method of estimating human exposure to the electromagnetic fields (EMF) of a massive MIMO base station (BS) in an industrial indoor environment e.g., an assembly line or a warehouse. The method relies on a massive MIMO channel model derived from ray-tracing simulations with stochastically generated environments. Incoming rays at the receiver location are used as the input for Finite-Difference Time-Domain plane-wave simulations with a realistic human phantom to obtain EM-exposure estimate.

PA-25 [14:30]

Influence of anatomical skin thickness of children on the whole-body SAR for future 5G-frequencies
Richard Überbacher¹ & Stefan Cecil¹
¹EMC & Optics Division, Seibersdorf Laboratories, Seibersdorf, Austria

Keywords: Dosimetry (computational), RF/Microwaves, Completed (published)
Presented by: Richard Überbacher

In this work we investigate the influence of the anatomical skin thickness on the whole body SAR of children regarding to the ICNIRP 1998 (gen.pub.) guidelines. Especially for the new upcoming 5G-frequencies, a closer realistic look and anatomical modelling of the border layers (e.g. skin and SAT) is recommended.

PA-27 [14:30]

Numerical RF dosimetry in 2D and 3D in vitro skin cell cultures
Rosanna Pinto¹,²,³, Stefania Romeo²,³ & György Thuroczy³
¹Division of Health Protection Technologies, ENEA, Roma, Italy
The new developments of wireless devices operate at higher radiofrequencies with respect to the past therefore larger exposure of the human skin to such electromagnetic fields is expected. In the present work, a numerical dosimetry analysis was carried out to identify the optimal exposure conditions, in terms of efficiency and uniformity of SAR distribution of 2D and 3D in vitro skin cell cultures to 1950 MHz and 2450 MHz. At 2450 MHz the RF exposures were simulated in Wire Patch Cell (WPC) exposure system, at 1950 MHz a standard waveguide exposure system was used. Both WPC and waveguide systems provide a good efficiency, in terms of induced SAR in the skin samples to incident power.

PA-29 [14:30]

Microenvironmental RF exposimetry in kindergartens
Peter Necz1, Noemi Nagy1 & György Thuroczy1
1Department of Non-Ionizing Radiations, National Public Health Institute, Budapest, Hungary, 1221
Keywords: Dosimetry (measurements), RF/Microwaves, Work in Progress
Presented by: György Thuroczy

The aim of present study was to determine RF exposure the level in the microenvironment of kindergartens in Hungary. Our assumption was that the RF exposures emitted by indoor wireless devices (DECT, WiFi) in kindergartens or in nurseries’ (office) rooms are usually higher than the RF radiation from base stations. Because the Wi-Fi routers and DECT telephones are usually placed in the offices, the exposure coming from wireless sources in nurseries’ room are significantly higher than the RF exposure from outdoor sources. The level of RF exposure in children’s room is similar to the indoor residential exposure of general public if the indoor wireless devices are placed out of their room.

PA-31 [14:30]
WITHDRAWN

PA-33 [14:30]

A novel magnetic field sensor for the compliance with EMF Directive 2013/35/EU
Valerio De Santis1, Tommaso Campi1, Silvano Cruciani1 & Mauro Feliziani1
1Department of Industrial and Information Engineering and Economics, University of L'Aquila, Italy, Italy, 67100
Keywords: Dosimetry (measurements), ELF/LF, Work in Progress
Presented by: Valerio De Santis

In July 2016, the Directive 2013/35/EU has become in force posing new requirements on European Union (EU) employers to evaluate the exposure of workers to electromagnetic fields (EMFs). Current instrumentation used for the EMF evaluation is insufficient to fully demonstrate compliance with exposure limits. This is particularly true in the low frequency (LF) range, where existing commercial field sensors have large probe dimensions making the measurement of near-field magnetic field sources not reliable. The aim of this study is to develop a novel magnetic field sensor to facilitate the compliance assessment against the EMF Directive limits in the LF range.

PA-35 [14:30]

Development of solutions to reduce workers exposure to ELF-EMF in live line conditions
Luis Domingues1, Athanasio Mpalantinos1, Carlos Barbosa1 & Paulo Oliveira1
1Transmission Lines and Equipment Department, Electric Energy Research Center - CEPEL, Rio de Janeiro,
There are situations, in the operation of an electrical transmission network, when, either routine or emergency maintenance activities, must be performed without disconnecting the transmission line (live line work). Those activities are necessarily executed at short distances from electrically energized parts, where electric and magnetic fields are presumably high. This article presents the sequence of studies - computational modeling, laboratory and field measurements - developed in order to control occupational exposure of electricians performing maintenance activities on energized transmission lines and substations.

PA-37 [14:30]
STUDENT PAPER
MRI patient exposure - characterization and sequence-comparisons
Jennifer Frankel¹, Kjell Hansson Mild¹ & Jonna Wilen¹
¹Department of Radiation Sciences, Umeå University, Umeå, Sweden, 90187
Keywords: Dosimetry (measurements), ELF/LF, Completed (unpublished)
Presented by: Jennifer Frankel
The unique mixture and intensity of magnetic fields experienced by the patient during an MRI exam are quite complex from an exposure perspective. We measured the RF- and gradient magnetic fields inside a 3T MRI scanner and extracted several exposure parameters to give a comprehensive description of the exposure of each sequence. We found significant differences between sequences for each of the exposure parameters studied. We also found within-sequence variation. This means that MRI exposure is not only sequence-specific but also specific to the individual patient and exam occurrence, a complexity which must be kept in mind when performing exposure assessment for epidemiological studies on MRI.

PA-39 [14:30]
Exposure assessment of commercially available Infrared (IR) Panels
Peter Gajšek¹, Tomaž Trček¹ & Blaž Valič¹
¹Institute of Nonionizing Radiation, Ljubljana, Slovenia, 1000
Keywords: Dosimetry (measurements), Optical, Completed (unpublished)
Presented by: Peter Gajšek
In this study, exposure assessment of different commercially available IR panels was done. We have investigated exposure to power frequency magnetic field and far infrared radiation. The results showed that the measured values were below the current ICNIRP guidelines. For the worst case scenario, when standing closer than 0.5 m directly in front of the IR panel of 1000W and 1400 W, respectively, and continuously staring at it for at least 1000 seconds at an outside temperature of 22 °C, the limit values for cornea and lens damage of 190 W/m² according to ICNIRP guidelines were exceeded.

PA-41 [14:30]
STUDENT PAPER
Measurement and health assessment of electromagnetic fields by electric vehicles during road traffic operation using driving characteristics
Kai Jagielski¹, Pia Schneeweiss¹, Dominik Stunder¹ & Thomas Kraus¹
¹Research Center for Bioelectromagnetic Interaction (femu), RWTH Aachen University, Aachen, Germany, 52074
Keywords: Dosimetry (measurements), Pulsed, Work in Progress
Presented by: Kai Jagielski
This contribution introduces a measurement system which enables magnetic field measurements in
the frequency range between 1 Hz and 400 kHz on electric vehicles during vehicle operation. The additional recording of the driving style, with acceleration sensor, gyroscope and GPS module, allows a detailed investigation of the influence of various vehicle components on the magnetic field spectrum. First measurement results of electric cars and the evaluation possibilities are presented. In future, measurements will be carried out for example at wireless charging systems or electric buses.

PA-43 [14:30]

Spatial variations of personal exposure to radiofrequency electromagnetic fields at the University of Castilla-La Mancha (Spain)
Alberto Juárez-Castillo¹ & Alberto Nájera¹
¹Medical Sciences Department, University of Castilla-La Mancha, Albacete, Spain, 02005
Keywords: Dosimetry (measurements), RF/Microwaves, Completed (unpublished)
Presented by: Alberto Nájera

Summary: We measured personal exposure to RF-EMF in 4 different microenvironments of 7 buildings of the University of Castilla-La Mancha in Albacete (Spain). Exposure to WiFi 5G was predominant in all the buildings. Mobile telephone signals represented a small percentage of the total exposure. Regarding the correlation study, only the average exposure of some centres was statistically significant, but in all cases less than 0.550. Exposure varies from each microenvironment and building.

PA-45 [14:30]

Exposure to radiofrequency electromagnetic fields (RF-EMF) assessment: comparison between spot and personal exposimeter measurements in Taracón (Spain)
Alberto Nájera¹, Jesus Alpuente-Hermosilla², Jesus Gonzalez-Rubio¹, Rocio Sanchez-Montero² & Pablo Luis²
¹Medical Sciences, University of Castilla-La Mancha, Albacete, Spain, 02008
²Signal Theory and Communications, University of Alcalá de Henares, Alcalá de Henares, Spain, 28801
Keywords: Dosimetry (measurements), RF/Microwaves, Completed (unpublished)
Presented by: Alberto Nájera

Summary: In this paper, we compare RF-EMF exposure levels determined by this two equiment: a broadband isotropic probe (NARDA EMR-300) and personal exposimeter (Satimo EME Spy 140) in 38 different locations for 6 minutes covering the whole urban area of Tarancón (Spain).

PA-47 [14:30]

A study on the verification of the exposure system and the SAR values of the exposed cells in in vitro experiments
Jaesung Lee¹, Hyungsang Ahn¹, Junoh An¹, Sangbong Jeon² & Jeong-Ki Pack³
¹Institute for Future Radio Engineering, Seoul, Korea, 03175
²Electronics and Telecommunications Research Institute, Daejeon, Korea, 34129
³Chungnam National University, Daejeon, Korea, 34134
Keywords: Dosimetry (measurements), RF/Microwaves, Work in Progress
Presented by: Jaesung Lee

This study was conducted to verify the SAR values of the exposed cells in an in vitro experiment. In this study, the signal output power and the temperature change in the Petri Dish were measured, and the exposure level of the electromagnetic wave was derived based on the measurement data. The results show that power of 3.09W is estimated as the appropriate source input for 1W/kg of 1g-averaged SAR and 24.72W for 8W/kg of 1g-averaged SAR.
The response of magnetotactic bacteria suspensions to radiofrequency in the UHF & SHF ranges: A prospective study

Simona Miclaus1, Cristina Moisescu2, Ioan I. Ardelean2, Lucian Barbu-Tudoran3, Ioan Ardelean4, Lourdes Farrugia5, Charles Sammut5 & Paul Bechet1

1Department of Technical Sciences, "Nicolae Balcescu" Land Forces Academy, Sibiu, Romania
2Department of Microbiology, Institute of Biology, Bucharest, Romania
3National Institute for R&D of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
4Physics and Chemistry Department, Technical University of Cluj-Napoca, Cluj-Napoca, Romania
5Department of Physics, University of Malta, Msida, Malta

Keywords: Dosimetry (measurements), RF/Microwaves, Work in Progress

Presented by: Simona Miclaus

As biogenic magnetite nanoparticles encapsulated in a membrane forming magnetosomes inside magnetotactic bacteria are excellent competitors of magnetic nanoparticles obtained by chemical synthesis, their study over a wide frequency band in the upper part of radiofrequency spectrum may provide knowledge for new technological applications. On the other hand, impact of power loss production and deposition in magnetite crystals due to the magnetic component of the absorbed field is not yet studied in case of various communication devices worn near the head (case of tissues contain magnetite). In this regard a set of experiments were carried out to follow the energetic response of magnetite at hundreds-thousands of MHz.

EMF measurement probes are prone to errors for modulated signals

Antonio Sarolic1 & Pawel Bienkowski2

1Chair of Applied Electromagnetics - EMLab, FESB, University of Split, Split, Croatia, HR-21000
2Technical University of Wroclaw, Wroclaw, Poland, 50-370

Keywords: Dosimetry (measurements), RF/Microwaves, Work in Progress

Presented by: Antonio Sarolic

Electromagnetic field (EMF) measurement probes are commonly used for performing health hazard assessments. EMF waveforms are rarely purely sinusoidal, leading to measurement errors of diode-based EMF probes. The existence of such errors is known to researchers, but their accurate magnitude with respect to the signal waveform is less known. This study shows that the error magnitude depends on the individual probe, and can be surprisingly significant.

ELF measurements around powerlines for validation with operator data

Fabian Schneider1, Philipp Bachmann1, Marco Zahner1, 2 & Jürg Fröhlich1

1Fields at Work, Zürich, Switzerland, 8006
2Institute of Electromagnetic Fields (IEF), ETH Zurich, Zürich, Switzerland, 8092

Keywords: Dosimetry (measurements), ELF/LF, Work in Progress

Presented by: Fabian Schneider

Field strength measurements of specific configurations of powerlines at different maximum current patterns are difficult to estimate in reality. Therefore, different measurement methods are proposed and compared to an analytical field calculation based on actual grid data. With the long term measurement results changes in the field strength due to load regulation can be clearly recognized. The ground measurements show a good agreement between the simulation and the measurements. Aerial measurements using a Quadro copter are a viable solution. However, due to movement artifacts, position uncertainties and simulation inaccuracies a direct comparison of the
two is difficult to achieve.

PA-57 [14:30]

Versatile RF electromagnetic fields exposure meter
Marco Zahner¹, ², Fabian Schneider¹ & Jürg Fröhlich¹

¹Fields at Work GmbH, Zurich, Switzerland, 8006
²Institute of Electromagnetic Fields, ETH Zurich, Zurich, Switzerland, 8092

Keywords: Dosimetry (measurements), RF/Microwaves, Work in Progress

Presented by: Marco Zahner

To cope with the variety and complexity of today’s wireless communication systems and standards, flexible exposure assessment instrumentation is necessary. The state of the art approach of measuring the average field strength in a predefined set of frequency bands does not provide the granularity required to discern the contributions from different mobile standards and devices operating in the same frequency band, and it can also miss important contributions when new frequency bands are allocated or modified. A measurement approach allowing to solve these problems has been tested and implemented in a handheld prototype device.

PA-59 [14:30]

Multi-modal measurements of occupational exposure to extremely low frequency fields in a 110 kV substation
Lei Zhang¹, ², Peng Gao¹, ², Feizhou Zheng¹, ² & Zheng-Ping Yu¹, ²

¹Department of Occupational Health, Army Medical University (Third Military Medical University), Chongqing, China, 400038
²Key Laboratory of Medical Protection for Electromagnetic Radiation, Ministry of Education, Army Medical University (Third Military Medical University), Chong, China, 400038

Keywords: Dosimetry (measurements), ELF/LF, Completed (unpublished)

Presented by: Lei Zhang

This study described the characteristics of ELF-EMF in a typical 110 kV substation in China using a multi-mode measurement protocol. The geometric means of electric field (E field) strengths in different working areas ranged from 0.42 V/m to 2458.31 V/m. The geometric means of magnetic field (H field) flux densities ranged from 0.12 μT to 16.29 μT. This study provides a comprehensive description of occupational exposures to ELF-EMF in a typical Chinese 110 kV substation. In addition, the multi-mode measurement protocol provides a scenario of EMF distribution both in time and space-dependent manner.

PA-61 [14:30]

Novel and versatile instrumentation for electro-manipulation of cancer stem cells
Ilan W. Davis¹, ², Caterina Merla³, Alessandro Zambotti⁴, Arianna Casciati³, Mirella Tanori³, Jonh Bishop², Cristiano Palego¹, Mariateresa Mancuso³ & Christofer P. Hancock¹, ²

¹School of Electronic Engineering, University of Bangor, Bangor, United Kingdom, LL57 1UT
²Creo Medical, Bath, United Kingdom, BA2 3DZ
³ENEA, Division of Health Protection Technologies, Rome, Italy, 00123
⁴ENEA, Division Resource Efficiency, Rome, Italy, 00123

Keywords: Electroporation, Pulsed, Work in Progress

Presented by: Caterina Merla

This paper presents novel instrumentation combined with an artificial 50 Ω buffer for possible fast neutralization of cancer stem cells. The results from an initial bench study investigates the performances of a developed electroporation generator capable of delivering non-thermal treatments in combination with an original cuvette housing unit containing suitable solutions of cancer stem cells. Initial investigation for electroporpermeabilization threshold of cancer stem cells was conducted, indicating that the developed devices and protocols have a strong potential in achieving...
electro-manipulation of this biological target.

PA-63 [14:30]

A stripline system for the exposure of ex-vivo samples to nanosecond pulsed electric fields

Alessandra Paffi¹, Alessandro Banin¹, Agnese Denzi¹, Maura Casciola², Micaela Liberti¹ & Francesca Apollonio¹

¹Department of Information Engineering, Electronics and Telecommunications (DIET), Sapienza University of Rome, Rome, Italy, 00184
²Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA, 23508

Keywords: Electroporation, Pulsed, Work in Progress

Presented by: Alessandra Paffi

We present an exposure system, based on a slotted stripline, to stimulate frog nerves with the use of nanosecond and sub-nanosecond pulsed electric fields (nsPEFs). The system guarantees the electromagnetic compatibility with laboratory equipment and exhibits a very good impedance matching up to 3 GHz, thus allowing the undistorted propagation of nsPEFs. Through a hole (3 mm of diameter) on the outer enclosure, the system permits a localized exposure of the nerve to a maximum |E| field of 0.8 kV/m for 1 W of input power. This is compatible with conventional electrical stimulation of nervous systems using much longer pulses; however, experimental studies are needed to identify a stimulation threshold for such short pulsed signals.

PA-65 [14:30]

STUDENT PAPER

Enhancement of in vitro gene electrotransfer using gold nanoparticles

Tjasa Potocnik¹, Tina Batista Napotnik¹, Tamara Pezić¹, Matej Reberšek¹ & Damijan Miklavčič¹

¹University of Ljubljana, Faculty of Electrical Engineering, Ljubljana, Slovenia, 1000

Keywords: Electroporation, Pulsed, Work in Progress

Presented by: Tjaša Potočnik

Gold nanoparticles when added to cell suspension prior to electroporation significantly increased transfection rate using monopolar pulses in vitro. When bipolar pulses were used for gene electrotransfer, the presence of gold nanoparticles had no effect on transfection rate. Our results show the possibility of providing sufficient transfection rate with lower voltage applied to cells in presence of gold nanoparticles.

PA-67 [14:30]

Ablate orthotopic pancreatic cancer in animal model with repetitive nanosecond pulsed electric field

Shengyong Yin¹, Guanlei Deng², Zhen Liu², Chao Zheng², Keping Yan² & Shusen Zheng¹

¹The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China, 310003
²Institute of Industrial Ecology and Environment, Zhejiang University, Hangzhou, China, 310007

Keywords: Electroporation, Pulsed, Completed (unpublished)

Presented by: Shengyong Yin

A homemade R-nsPEF can ablate tumor detectable tumor safely and effectively. It had been investigated that the potential clinical application of this pulsed electric field energy supply by ablating large volume tumor with the pulse duration less than 100 nanoseconds. It indicated that more accurate targeted and minimally invasive focal ablation modality could be achieved by nsPEF with less energy.

PA-69 [14:30]

Maternal exposure to high levels of magnetic field non-ionizing radiation during pregnancy and the risk of preeclampsia: A large prospective cohort study
In this prospective cohort study, maternal exposure to high levels of magnetic field (MF) non-ionizing radiation during pregnancy was found to be associated with increased risk of preeclampsia. The observed association showed a dose-response relationship with increasingly higher MF levels being associated with a greater risk of preeclampsia. The presence of other risk factors for preeclampsia appears to exacerbate the risk associated with MF exposure. The finding provides new evidence that MF may impact immunological function.

PA-71 [14:30]
WITHDRAWN

PA-73 [14:30]
STUDENT PAPER

Repeated long term exposure of Mesenchymal Stem Cells to electric fields using a new pulse generator
Shirmone Botha¹, Borja Lopez², Óscar Lucía², Héctor Sarnago², Alejandro Naval², José-Miguel Burdio², Adeline Muscat¹, Tomás García-Sánchez¹, Franck Andre¹ & Lluis M. Mir¹
¹Laboratory of Vectorology and Anticancerous Therapeutics UMR8203, Institut Gustave Roussy, Paris, France, 94805
²Department of Electronic Engineering and Communications, University of Zaragoza, Zaragoza, Spain, 50018

Keywords: Human, Pulsed, Work in Progress
Presented by: Shirmone Botha

In mesenchymal stem cells (MSCs), numerous studies describe the spontaneous oscillations of cytosolic calcium at various concentrations. We demonstrate that the application of one high voltage micro second pulse disrupts natural calcium oscillations making it possible to insert an additional synthetic calcium oscillation pattern over several hours. This study strengthens the perception that pulsed electric fields can be used as a tool to manipulate calcium oscillations in human adipose derived MSCs using a novel pulse generator as the one specifically developed. These manipulations might be used as a tool to improve MSC engineering.

PA-75 [14:30]
STUDENT PAPER

A novel method for estimation of brain tissue electrical conductivity: from in silico to in clinico results
Andres Carvallo¹, Julien Modolo¹, Pascal Benquet¹ & Fabrice Wendling¹
¹Univ Rennes, INSERM, LTSI - U1099, Rennes, France, 35000

Keywords: Human, ELF/LF, Completed (unpublished)
Presented by: Andres Carvallo

METHODS: We derived an analytical model of the electric potential generated by SEEG electrodes. We coupled the electric potential with an electrode-electrolyte interface model to i) derive an analytical expression of brain tissue response to biphasic pulses and ii) estimate conductivity.
RESULTS: We validated our biophysical model using i) saline solutions calibrated for electrical conductivity, ii) rat brain tissue, and iii) intracerebral electrophysiological data recorded in epileptic patients during pre-surgical evaluation.
CONCLUSIONS: Rapid and reliable brain tissue electrical conductivity estimation is achieved using the proposed method.
PA-77 [14:30]

Risk perceptions of mobile communication in Japan: A 2017 survey
Ayumi Masuchi
1Hokkai-Gakuen University, Sapporo, Japan, 0628605

Keywords: Human, RF/Microwaves, Completed (unpublished)
Presented by: Ayumi Masuchi

This study was conducted to reveal average person’s knowledge and risk perceptions related to mobile communication in Japan. A Web survey was completed by 300 teenagers and 2,000 adults. The results were compared to our 2013 survey results. While most used mobile phones more frequently, respondents’ information and knowledge level about the risks of electromagnetic fields radiating from mobile phones and base stations was about the same or lower than in 2013. Their concern level was slightly lower. Most respondents did not consider the risk as serious and did not have a clear opinion. Young people use mobile phones longer, feel more physical discomfort and worry more about the health effects when using mobile phones than older adults.

PA-79 [14:30]

Effect of Radio Frequency Radiation (RFR) emitted from cell phone on human health
Radhey Shyam Sharma1, Ravindra Nath1 & Rajeev Singh2
1Reproductive biology, Maternal and Child Health, Indian Council of Medical Research, Ministry of Health and Family Welfare, New Delhi, India, 110029
2Department of Environment Science, Delhi University, New Delhi, India, 110052

Keywords: Human, RF/Microwaves, Work in Progress
Presented by: Dr. Radhey Shyam Sharma

No conclusive data available so far on the adverse effect of RFR emitted from cell phone. Even epidemiological evidences generated so far are inadequate for a comprehensive evaluation of risk caused by RFR. To address the above issue, the ICMR is undertaking a multi-disciplinary prospective cohort study in Delhi to find out adverse effects of RFR, if any, emitted from cell phone on adult Indian population. The details of the protocol, the current status of the study and other ongoing research activates in this area of public importance going on in the country will be presented during the conference.

PA-81 [14:30]

Effect of the 1800 MHz-RF exposure on in vitro neuronal networks activity: role of the modulation frequency
Corinne El Khoueiry1, Thinhinane Yebda1, Audrey Giremus1, Rémy Renom1, Florence Poulletier De Gannes1, Emmanuelle Poque-Haro1, Isabelle Lagroye1, Bernard Veyret1 & Noëlle Lewis1
1IMS Laboratory, Bordeaux University, Talence, France, 33405

Keywords: In vitro, Pulsed, Work in Progress
Presented by: Isabelle Lagroye

In a previous study, we reported a clear decrease in bursting rate of neuronal cultures under RF-1800 MHz exposure. The amplitude of the effect was greater with the GSM-1800 MHz signal compared to the CW signal. The present work aimed at assessing the contribution of the modulation frequency of the pulsed RF signal in the elicitation of the effect. We tested different multiples of the GSM modulation frequency (108.5; 217; 434 and 868 Hz) at the same averaged SAR level (2.4 W/kg). The preliminary results show that the effect was present for the GSM frequency (217 Hz) but not for other frequencies. Further work is ongoing to elucidate the mechanism of this effect.

PA-83 [14:30]

The BBEMG research program - A multidisciplinary approach in studying long-term effects
The effect of radiofrequency electromagnetic field at 1.7 GHz LTE on human adipose-derived stem cells and liver cancer stem cells

Kyeongrae Min¹, Nam Kim², Hyung-Do Choi³, Yun-Sil Lee⁴ & Kiwon Song¹

¹Department of Biochemistry, Yonsei University, Seoul, Korea, 03722
²School of Electrical and Computer Engineering, Chungbuk National University, Cheongju, Korea
³Department of EMF Research Team, Electronics and Telecommunications Research Institute, Daejon, Korea
⁴Graduate School of Pharmaceutical Sciences, Ewha Woman’s University, Seoul, Korea

Keywords: In vitro, Static, Work in Progress

Presented by: Kiwon Song

Due to the technology of mobile phone, we are daily exposed to LTE RF-EMF, but its biological effects have not been clarified. In particular, in spite of the physiological importance of adult stem cells and cancer stem cells, their response to LTE RF-EMF is not much studied. In this study, we investigated the cellular effect of 1.7 GHz RF-EMF (LTE) on adult and cancer stem cells. When continuously exposed to 1.7 GHz RF-EMF at 1 W/kg for 72 h, the proliferation of both adipose stem cells (ASC) and cancer stem cells of Huh7 was decreased: 8% in ASC and 30% in cancer stem cells of Huh7 compared to unexposed controls. These results suggest that the cancer stem cells are highly more sensitive to 1.7 GHz RF-EMF than normal adult stem cells.

Development of intermediate frequency band exposure apparatus and its effect on cultured cells

Eijiro Narita¹, Shin Koyama¹, Yoko Shimizu¹, Naoki Shinohara¹ & Junji Miyakoshi¹

¹Laboratory of Applied Radio Engineering for Humanosphere, Kyoto University, Uji, Japan, 611-0011

Keywords: In vitro, IF, Work in Progress

Presented by: Eijiro Narita

We developed an exposure apparatus that generates an intermediate frequency at 85 kHz. We carry out various cell experiments in pursuit of the possibility that the intermediate frequency exerts a non-thermal effect. We examined the cell proliferation test, the colony forming ability test, and the cell cycle distribution test using HCE-T cells, which is derived from human cornea. We confirmed that this device retains a normal culture environment without any artefact. Exhaustive gene expression analysis of human cells will be carried out by standard cell experiment method widely used as safety evaluation in future.
PA-89 [14:30]

Effects of ultraviolet radiation on full thickness human skin model in vitro (SKIN-RF project)
Zsuzsanna Nemeth1, Györgyi Kubinyi1, Jozsef Bakos1, Brahim Selmaoui2 & György Thuroczy1
1Department of Non-Ionizing Radiation, National Public Health Institute, Budapest, Hungary, 1221
2Unité de Toxicologie Expérimentale, L’Institut National de l’Environnement Industriel et des Risques (INERIS), Verneuil en Halatte, France, 60550
Keywords: In vitro, Optical, Work in Progress
Presented by: Zsuzsanna Nemeth

The aim of this study was to examine whether the solar ultraviolet (UV) radiation has any effect on cytokine (IL-1α, IL-6, IL-8) and MMP-1 enzyme secretion on human skin model in vitro. The full thickness skin models were exposed by a sun simulator lamp to UV radiation (1.5 SED, 3 SED). The IL-1α, IL-6, IL-8 and MMP-1 concentrations were measured 24 hours after UV exposure from the culture medium by the ELISA method. In this study we managed to show that UV radiation doses of 1.5 SED, 3 SED did not alter the level of these factors. This experiment was done as a preliminary study for the project named “Cellular response to co-exposure of radiofrequency (RF) and solar ultraviolet (UV) radiation in human in vitro skin model (SKIN-RF)”.

PA-91 [14:30]

STUDENT PAPER

Local thermal dosimetry applied to in vitro studies at millimetre waves
Rosa Orlacchio1, Maxim Zhadobov1, Stanislav Alekseev2, Ronan Sauleau1, Yann Le Page3 & Yves Le Dréan3
1Institut d’Électronique et de Télécommunications de Rennes (IETR), University of Rennes 1, Rennes, France, 35042
2Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Russian Federation, 142290
3Institute for Research on Environmental and Occupational Health (IRSET), University of Rennes 1, Rennes, France, 35042
Keywords: In vitro, RF/Microwaves, Work in Progress
Presented by: Rosa Orlacchio

This study investigates the role of thermal convection arising from high SAR gradients during in vitro exposure to millimetre waves (MMW). The impact of the liquid volume and exposure duration on initiation of convective currents is investigated. Water and a convection-free medium with water-equivalent electromagnetic properties have been exposed to continuous wave (CW) and amplitude modulated MMW. Continuous and pulsed heating were recorded using a microthermocouple. Our results suggest that convection plays an important role in MMW-induced heating in in vitro experiments, and its initiation depends both on the volume of the exposed liquid and the duration of exposure.

PA-93 [14:30]

Radiofrequency radiation (RFR) induces Bad, p-Bad activation leading to cell apoptosis on DLD1 human colon carcinoma cell lines
Elcin Ozgur1, Fatih Senturk1, Gorkem Kismali2, Tevhide Sei2 & Goknur Guler1
1Biophysics Department, Gazi University, Ankara, Turkey, 06500
2Biochemistry Department, Ankara University, Ankara, Turkey
Keywords: In vitro, RF/Microwaves, Work in Progress
Presented by: Fatih Senturk

In this study, radiofrequency radiation (RFR) effects investigated on Bad and p-Bad the pro-apoptotic member of the Bcl-2 family in human colon cancer cell, DLD1. We evaluated the effects of intermittent RFR exposure (digitally modulated 3GPP signals at 900, 1800, 2100 MHz) for 1 hr and 4 hrs (15 min on, 15 min off). Bad, p-Bad expressions determined by ELISA increased due to 900 and 2100 MHz RFR exposure for 1h. However, 4 hours of RFR exposure lead to decrease in all parameters (p<0.05 and less). Overexpression of Bad has been shown to induce apoptosis, so it is
concluded that intermittent exposure of RFR might induce apoptosis by Bad and p-Bad expression on DLD-1 cancer cells.

PA-95 [14:30]
Evaluation of biological effects induced by electromagnetic radiation waves
Flavien Pillet¹, Jelena Kolosnjaj-Tabi¹, Rene Vezinet² & Marie-Pierre Rols¹
¹IPBS-CNRS, Toulouse, France, 31077
²CEA-Gramat, CEA, Gramat, France, 46500
Keywords: In vitro, Pulsed, Completed (unpublished)
Presented by: Marie-Pierre Rols

We developed a set of micro applicators to study the potential effect of electromagnetic fields on biological samples. The applicators allow a real-time observation. Different signals were used: electromagnetic waves and square-wave monopolar electric field pulses causing electroporation. The biological effects were assessed on giant unilamellar vesicles and mammalian cells, and compared to results obtained at full scale with signals generated by antennas.

PA-97 [14:30]
50 Hz MF exposure has no significant DNA damage effect on ATM deficient MEFs
Yumin Jin¹, Chuan Sun¹, Xiaoxia Wei¹, Aziguli Yimaer¹, Zhengping Xu¹ & Guangdi Chen¹
¹Bioelectromagnetics lab, Zhejiang University School of Medicine, Hangzhou, China, 310058
Keywords: In vitro, ELF/LF, Work in Progress
Presented by: Yumin Jin

The genotoxicity of ELF-ME exposure has been widely studied, however, the results are inconsistent. In our study, we investigated the effect of 2.0 mT 50 Hz MF exposure on a DNA repair factor (ATM) proficient and deficient MEFs. The results showed that, in either wide type or ATM deficient MEFs, 50 Hz MF exposure did not significantly induce DNA damage, and could not affect cell apoptosis and cell viability, suggested that the 50 Hz MF exposure enhance DNA damage in ATM deficient MEFs.

PA-99 [14:30]
STUDENT PAPER
Effect of high frequency electric field on growth factor of cultured osteoblasts
Shunsuke Yamaguchi¹, Masatake Akutagawa¹, Hiromichi Yumoto², Kouji Hirao², Takahiro Emoto¹, Hiroya Tarao³, Toshihiko Tominaga⁴, Toshitaka Ikehara⁵ & Yohsuke Kinouchi¹
¹Department of Electrical and Electronic Engineering, Tokushima University, Tokushima, Japan, 770-8506
²Department of Periodontology and Endodontology, Tokushima University, Tokushima, Japan, 770-0042
³Department of Electrical & Computer Eng., National institute of technology Kagawa college, Takamatsu, Japan, 761-8058
⁴Tominaga Dental Clinic, Naruto, Japan, 771-0360
⁵Institute for Health Sciences, Tokushima Bunri University, Tokushima, Japan, 770-8514
Keywords: In vitro, IF, Work in Progress
Presented by: Shunsuke Yamaguchi

In this experiment, high frequency AC voltage was applied to cultured osteoblasts. The voltage waveform used is a sinusoidal wave of 500 kHz 20 V. Temperature, voltage, osteoblastic VEGF, VEGFmRNA and ALP were measured. VEGF and VEGFmRNA were measured 1 day after voltage application and ALP was measured 7 days after. Durations of voltage application were 30, 60, 90 and 120 s. As results of them, it is obvious that it affects the osteogenesis of osteoblasts by electrical factors. Although it depends on the initial state (cycle) of the cells, VEGF was significantly increased at 90 seconds and VEGFmRNA at 120 seconds. Change of ALP by application of the elecrical field was not observed in our experiment.
Impact of microwave irradiation on enzyme activities, cell membrane properties and bacterial growth at constant temperatures

Tony Yan

Department of Chemistry and Centre for Biotechnology, Brock University, St. Catharines, Ontario, Canada, L2S 3A1

Keywords: In vitro, RF/Microwaves, Other

Exposure of trypsin, but not amylase or phosphatase, to microwave at constant temperature leads to a significant increase in its apparent activity. The membrane properties of PC3 prostate cancer cells were found perturbed when the cell culture was subjected to 10 W microwave at 37°C. Lastly, bacterium E. coli growth was slowed down under non-lethal microwave irradiation, again, at constant 37°C. Proteomic analysis revealed subtle changes to E. coli under these conditions.

Localized intracellular temperature increase and ROS formation in immune relevant cells under ELF-MF exposure: exposure set-up and procedures for real-time and post-exposure measurements

Olga Zeni, Anna Sannino, Maria Rosaria Scarfi, Stefania Romeo, Mats-Olof Mattsson, Myrtil Simko

Institute for Electromagnetic Sensing of the Environment, National Research Council of Italy, Napoli, Italy, 80124

Center for Energy – ERT, Austrian Institute of Technology, Tulln, Austria, A-3430

SciProof International AB, Östersund, Sweden, S-83132

Keywords: In vitro, ELF/LF, Work in Progress

In this study we address the question if there is a possible correlation between reactive oxygen species formation and intracellular localized temperature increase (“hot spots”) in immune relevant cells under ELF magnetic field exposure. A specific in vitro experimental procedure has been established for real-time and post-exposure measurements of ROS formation and intracellular temperature change.

Mobile phone radiation induces mode-dependent DNA damage in a mouse spermatocyte-derived cell line: a protective role of melatonin

Lei Zhang, Chuan Liu, Qin-Long Ma, Zhou Zhou, Zheng-Ping Yu

Department of Occupational Health, Army Medical University (Third Military Medical University), Chongqing, China, 400038

Key Laboratory of Medical Protection for Electromagnetic Radiation, Ministry of Education, Army Medical University (Third Military Medical University), Chongqing, China, 400038

Department of Occupational and Environmental Health, Zhejiang University, Hangzhou, China, 310058

Keywords: In vitro, RF/Microwaves, Completed (published)

This study evaluated whether exposure to mobile phone radiation (MPR) can induce DNA damage in male germ cells. The levels of DNA damage were significantly increased following exposure to MPR in the listen, dialed and dialing modes. Moreover, there were significantly higher increases in the dialed and dialing modes than in the listen mode. However, the DNA damage effects of MPR in dialing mode were efficiently alleviated by melatonin pretreatment. These results regarding mode-dependent DNA damage have important implications for the safety of inappropriate mobile phone use by males of reproductive age and the protective role of melatonin.
Characterization of the suppressive effects of extremely-low-frequency electric fields on a stress-induced increase in the plasma glucocorticoid level in mice

Takuya Hori1, 2, Takaki Nedachi2, Hiroshi Suzuki1 & Shinji Harakawa1, 2
1Bio-Self-Regulating Science Laboratory, Obihiro University Agriculture and Veterinary Medicine, Obihiro, Japan, 0808555
2Research and Development, Hakuju Institute for Health Science, Shibuya-ku, Japan, 1510063
Keywords: In vivo, ELF/LF, Completed (unpublished)
Presented by: Takuya Hori

Recently, we found that in male BALB/c mice, the immobilization-induced increase in serum glucocorticoid (GC) was reduced by exposure to an electric field (EF) of 50 Hz, when the voltage was applied via the upper electrode of a parallel plate electrode system. This effect was dependent on both intensity (kV/m) and exposure time. The present study aimed to assess the anti-stress effect of the EF in 3 scenarios with the experimental system: the use of either 50 or 60 Hz, which are the standard power frequencies in most regions; varying levels of environmental brightness; complete or partial shielding of the mouse from the EF. We compared the GC levels among control, EF-alone, immobilization-alone, and co-treatment groups.

Effect of long-term RF-EMF exposure on microglia activation in 5xFAD mice

Ye Ji Jeong1, 2, Hyung-Do Choi3, Jeong-Ki Pack4, Nam Kim5, Yun-Sil Lee6 & Hae-June Lee1
1Division of Basic Radiation Bioscience, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
2Department of Life Sciences, Korea University, Seoul, Korea
3Department of EMF Research Team, ETRI, Daejeon, Korea
4College of Engineering, Chungnam National University, Daejeon, Korea
5School of Electrical and Computer Engineering, Chungbuk National University, Cheongju, Korea
6Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Korea
Keywords: In vivo, RF/Microwaves, Work in Progress
Presented by: Ye Ji Jeong

To explore the long-term RF-EMF effect on Alzheimer’s disease, we performed 6 months RF-EMF exposure to 5xFAD mice (SAR 5W/kg, 2 h/day, 5 days/week) and investigated behavioral changes and neuroinflammatory response. 5xFAD mice exposed to long-term RF-EMF showed mild decrease in Aβ deposition, memory improvement, and decrease in expressions of Iba-1 and microglia regulator genes compared to sham exposed group. Our finding suggests possible mechanism of beneficial effect of long-term RF-EMF on AD mice.

The effect of exposure to radiofrequency-electromagnetic field on serotonin metabolism in rat

Hye Sun Kim1, Man-Jeong Paik3, Sangbong Jeon4, Hyung Do Choi4, Jeong-Ki Pack5, Nam Kim6 & Young Hwan Ahn1, 2
1Department of Neurosurgery, Ajou University, Suwon, Korea, 16499
2Neuroscience Graduate Program, Ajou University, Suwon, Korea, 16499
3College of Pharmacy, Sunchon National University, Sunchon, Korea, 57938
4Radio Technology Research Department, Electronics and Telecommunications Research Institute, Daejeon, Korea, 34129
5Department of Radio Sciences and Engineering, Chungnam National University, Daejeon, Korea, 34134
6School of Electrical and Computer Engineering, Chungbuk National University, Cheongju, Korea, 28356
Keywords: In vivo, RF/Microwaves, Completed (unpublished)
Presented by: Young Hwan Ahn
The study investigated whether exposure to the radiofrequency identification signal could affect serotonin metabolism in rat. The preliminary results showed that RF-EMF exposure for 8 hours daily for 2 weeks at whole-body SAR of 2 W/kg to the adult Sprague-Dawely rats caused a significant reduction of urinary level of 5-methoxyindole-3-acetic acid, although urinary levels of serotonin and 5-hydroxyindoleacetic acid were not change significantly.

PA-113 [14:30]

Brain sensitivity to electromagnetic fields (4G) at various ages in the rat: memory persistence and associated genetic programs
Anne Pereira de Vasconcelos¹, Aurélie Bonelli-Salvadori¹, Marie-Muguet Klein¹, Brigitte Cosquer¹, Niels Kuster², Myles Capstick² & Laurette Boutillier¹
¹Laboratoire de Neurosciences Cognitives et Adaptatives, UMR 7364 CNRS-University of Strasbourg, Strasbourg, France, F-67000
²ITIS Foundation, Zurich, Switzerland, CH-8004
Keywords: In vivo, RF/Microwaves, Work in Progress
Presented by: Anne Pereira de Vasconcelos

We studied, in young, adult and aged rats, the effects of a 3-month exposure to a 4G signal (LTE, 900 MHz, SARwhole body 0.33 W/kg, ~ 61 V/m) in a reverberation chamber (4 h/day, 5 d/week). Chronic RF exposure did not affect acquisition or long-term retention of a spatial memory in the Morris water maze, whatever the age. Anxiety and locomotion were also not changed by RF. In adult rats and in resting conditions, RF exposure induced a significant number of differentially expressed genes (RNA Seq) in the prefrontal cortex. The 47 up-regulated genes were functionally associated with myelination, while the 33 down-regulated genes were associated with different isoforms of collagen. These gene expression data are currently under validation.

PA-115 [14:30]

Effect of rotating magnetic field on oocytes maturation
Yingying Zhao¹, Tianying Zhan¹ & Xiaomei Wang¹
¹Physiology Department, Shenzhen, China, 518060
Keywords: In vivo, Static, Completed (unpublished)
Presented by: Tianying Zhan

key word: rotary non-uniform magnetic fields; in vivi; oocytes; ovarian; ATP content; mitochondrial respiratory chain; completed(unpublished). Presented by: Tianying Zhan.

PA-117 [14:30]

Investigation of high frequency electromagnetic field component of cold microwave argon plasma - Effects of modulation of skin microcirculation wound healing and regeneration in mice in vivo
Lubomir Traikov¹, Todor Bogdanov¹, Nicoll-Ellen Kafozoff¹, Radka Hadjiolova², Liubina Vesselinova³, Margarita Kozmanova⁴, Gabriela Atanasova⁵ & Nikolai Atanasov⁵
¹Dept. Medical Physics and Biophysics, Medical University-Sofia, Sofia, Bulgaria, 1431
²Dept. Pathophysiology, Medical University-Sofia, Sofia, Bulgaria, 1431
³Dept. Physical and Rehabilitation Medicine, Military Medical Academy – Sofia, Sofia, Bulgaria, 1606
⁴Dept. Biophysics and Radiobiology, Sofia University “St. Kliment Ohridski”, Sofia, Bulgaria, 1164
⁵Dept. Wireless Communication and Broadcasting, College of Telecommunications and Post, Sofia, Bulgaria, 1700
Keywords: In vivo, RF/Microwaves, Work in Progress
Presented by: Lubomir Traikov

Current work present results of health effects of Cold Microwave Argon Plasma-CMAP over stimulation of processes of skin wound healing and regeneration. In order to explore the influence of
all physical and chemical factors of this physical complex system we separated high frequency electromagnetic field component from net argon gas flow. In order to evaluate biological effects of high frequency electromagnetic field HF-EMF, we investigate micro-vessel tone response, using Laser Doppler Flowmetry-LDF. After HF-EMF action, no significant increase of surface body temperature of investigated animals was detected using high-resolution FLIR-camera, but an increase of the skin blood flow was measured by LDF.

PA-119 [14:30]
Molecular dynamics simulations of the A2A adenosine receptor in presence of magnetic field
Elena della Valle¹, Federico Del Signore¹, Paolo Marracino¹, Davide Cocco¹, Stefania Setti², Ruggero Cadossi², Micaela Liberti¹ & Francesca Apollonio¹
¹Department of Information Engineering, Electronics and Telecommunications, University Sapienza of Rome, Rome, Italy
²IGEA SpA, Via Parmenide 10/A, Carpi, Italy
Keywords: Mechanistic/Theoretical, Static, Work in Progress
Presented by: Francesca Apollonio

In this paper, we present the implementation of an external static magnetic field with the Velocity Verlet algorithm for performing Molecular Dynamics simulations. Molecular Dynamics simulations allow to understand at molecular level the interaction mechanisms between atoms under specific conditions. Here MD simulations of a receptor protein have been performed in presence of an external magnetic field in order to try to elucidate specific endpoints of interaction with the field.

PA-121 [14:30]
STUDENT PAPER
Steepest-entropy-ascent quantum thermodynamic approach to scaling the electric field parameters and criticality related to cell signaling in electrically perturbed cells:
Experimental evidence and rationale
Ishan Goswami¹, Scott S. Verbridge² & Michael R. von Spakovsky¹
¹Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA, 24061
²Biomedical Engineering and Applied Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA, 24061
Keywords: Mechanistic/Theoretical, Pulsed, Work in Progress
Presented by: Ishan Goswami

A successful coupling of standard cancer treatment modalities with electric field-based tumor ablation techniques requires a general understanding of the mechanism of action of each modality to evaluate synergistic effects for better treatment efficacies. The caveat, however, is that the electric field parameter space and the molecular pathways are so large that understanding the mechanism of action of electric fields via exploring all possible combinations is prohibitive from a cost and time standpoint. To solve this parameter space problem, this work introduces a new computational approach that takes advantage of thermodynamic scaling laws applicable to bio-membranes. We report experimental evidence and the rationale behind this approach.

PA-123 [14:30]
Down-regulated miR-30a induced promotes neuronal autophagy by activating the AMPK signaling pathway after microwave exposure
Ruiyun Peng¹, Yanhui Hao¹, Wenchao Li¹ & Li Zhao¹
¹Department of Experimental Pathology, Institute of Radiation Medicine, Beijing, China, 100850
Keywords: Mechanistic/Theoretical, RF/Microwaves, Completed (unpublished)
Presented by: Ruiyun Peng

miR-30a is involved in the pathogenesis and progression of multiple diseases by affecting
autophagy, however, the mechanism under the regulation of autophagy by miR-30a has not been elucidated. In this study, the regulation mode of autophagy by miR-30a in neurons after microwave exposure was explored. The result found that microwave exposure reduced the expression of miR-30a in neurons, which could promote autophagy via activating the AMPK signaling pathway.

PA-125 [14:30]

Experimental platform for measurement of biological response of cells to weak low frequency magnetic fields

Michal Teplan¹, Martin Bereta¹, Ivan Bajla¹, Yvonne Haba²,³ & Michal Cifra⁴

¹Institute of Measurement Science, Slovak academy of sciences, Bratislava, Slovakia (Slovak Republic), 84104
²Department of Orthopaedics, Biomechanics and Implant Technology Research Laboratory Rostock, University, Rostock, Germany
³MSF/Chair of Ocean Engineering, University of Rostock , Rostock, Germany
⁴Institute of Photonics and Electronics, Czech Academy of Sciences, Prague, Czech Republic

Keywords: Mechanistic/Theoretical, ELF/LF, Work in Progress
Presented by: Michal Teplan

The goal of our research is to design a complex experimental platform enabling efficient scanning through magnetic field parameters, while searching for specific response of investigated biosystem. The methods are focused on the impedance spectroscopy in order to determine the response in growth rate of cell cultures as well as in the electrical characterization of cell structures.

PA-127 [14:30]

EMF exposures near the electrical gastronomy devices – low and radiofrequency evaluation

Krzysztof Gryź¹, Jolanta Karpowicz¹ & Patryk Zradziński¹

¹Central Institute for Labour Protection - National Research Institute (CIOP, Warszawa, Poland, 00-701

Keywords: Occupational, All Frequencies, Work in Progress
Presented by: Krzysztof Gryź

The aim is to identify and evaluate combined EMF near electric gastronomy devices (common private and business use) - ELF magnetic and RF electric components, both covered by IARC 2B classification. Both components recorded near microwave ovens significantly exceed average level of population exposure - ELF up to 10μT; RF up to 14V/m. Special attention during EMF measurements and evaluation is needed for exposure time-pattern - devices of continues EMF emission, as well as pulsed (keyed) were found. Results shown that professional activities near electrical gastronomy devices may play dominant role in the EMF cumulative exposure.

PA-129 [14:30]

Single nucleotide polymorphisms in 5-HTR and GRIN2B associated with risk of cognition dysfunction in electric workers?

Xiangjun Hu¹, Lifeng Wang¹ & Haijuan Li¹

¹Beijing Institute of Radiation Medicine, Beijing, China, 100850

Keywords: Occupational, ELF/LF, Completed (unpublished)
Presented by: Xiangjun Hu

There were some abnormal characterizations of the brain and cardiac function in workers engaged in electric company for long time. The latency of N2 and P3 in TT genotype of rs6313, the N2 latency and the contents of LENK in GG genotype of rs6295, the N2 latency in CC genotype of ENS10557853 were prolonged, with the increase of exposure dosage respectively compared to CC, CG and TT genotypes. 5-HT1AR in rs6295 G allele, GRIN2B in ENS10557853 C allele and 5-HT2AR in rs6313 T allele might increase the risk of cognition retardation in the electric workers.
PA-131 [14:30]

A systematic review on biological effects of magnetic, electric and electromagnetic fields in the intermediate frequency range (300 Hz–1 MHz)
Lambert Bodewein¹, Kristina Schmiedchen¹, Dagmar Dechent¹, Dominik Stunder¹, David Graefrath¹, Lukas Winter¹, Thomas Kraus¹ & Sarah Driessen¹
¹Research Center for Bioelectromagnetic Interaction (femu), University Hospital RWTH Aachen, Aachen, Germany, 52074
Keywords: Public Health Policy, IF, Completed (published)
Presented by: Dagmar Dechent

The aim of this systematic review was to provide an update of the state of research on effects of electromagnetic fields in the intermediate frequency range on biological systems. Fifty-six experimental studies were eligible with only few human studies and no epidemiological study. Included studies examined several in vivo and in vitro systems and different endpoints and found inconsistent evidence for field effects. No indications for effects of specific applications using intermediate frequency fields were found. Weak intensity fields and frequencies >100 kHz have been scarcely investigated. Methodological limitations lowered the credibility of studies. Future work should consider the identified shortcomings and gaps of knowledge.

PA-133 [14:30]

Specific absorption rate reduction design of dual-band planar monopole antenna with defected ground structure for WLAN applications
Min-Joo Jeong¹, Ji Woong Park¹, Byeong-Nam Kang¹, Niamat Hussain¹, Hanul Bong¹ & Nam Kim¹
¹Chungbuk National University, Cheongju-si, Korea, 28644
Keywords: Public Health Policy, RF/Microwaves, Work in Progress
Presented by: Niamat Hussain

In this paper, we proposed a planar monopole antenna with dual band characteristics that can be used in 2.4 GHz band and 5 GHz band of WLAN. We also calculated the Specific Absorption Rate (SAR) for 1 g tissue at 0 mm distance from head instead of 10 mm, which is stricter than the international standard, and compared it with SAR values with and without reflector at 2.4 GHz and 5.8 GHz. Compared with the international standard 1 g tissue SAR value (1.6 W/kg), the proposed antenna with reflector reduces about 86.38 % (@ 1.382 W/kg difference) at 2.4 GHz and 81.18 % (@ 1.299 W/kg difference) at 5.8 GHz.

PA-135 [14:30]

Risk perception of manufacturing industry labors exposure to ELF-MF at work
M.D Rajitha Kawshalya¹, Yun Jin Lee² & Seung-Cheol Hong¹. ²
¹Emergency and Disaster management, Inje University, Gimhae-Si, Korea, 621-749
²Occupational Health & Safety Engineering, Inje University, Gimhae-Si, Korea, 621-749
Keywords: Public Health Policy, ELF/LF, Completed (published)
Presented by: M.D Rajitha Kawshalya

The questionnaire survey was conducted among the industrial labors to investigate the risk perception of exposure to extremely low-frequency magnetic fields (ELF-MF) at the workplace. The study subject was the foreign labors who currently occupied in Korea as labors under the employee permits system by the Korean government. These workers are involved with heavy industrial work that rejected by many locals to do due to the dangerous, dirty and difficulty. There have been very fewer studies conducted to investigate the safety measurement of these works in non-ionizing radiation. This study is to collect valuable information of perspective to the exposure of ELF-MF.

PA-137 [14:30]

Development and operation of movable EMF experience camp for efficient risk communication to general publics
Seungwoo Lee1, Geun Teak Yeo1, Kyungku Nah1 & Hong Lae Kim1
1Transmission & Substation Construction Dept., Korea Electric Power Corporation, Naju-si, Korea, 58217

Keywords: Public Health Policy, ELF/LF, Work in Progress

Presented by: Seungwoo Lee

We developed and managed new type of experience house which is called Movable EMF Experience Camp for movable and easy access. The movable EMF experience camp which consists of experience contents in the container house. The size of a camp is 7m x 3m x 2.5m, and it contained 10 kinds of contents in 4 areas. We are operating the camp in the places of civil complaint, public relations, construction of electric power facilities, etc.

PA-139 [14:30]

Measurements of magnetic fields generated by home electric appliances

Kiyotaka Hayashi1, Shigeru Ootsubo1, Toshihisa Kadoya1, Chiyoji Ohkubo1 & Yukio Mizuno2
1Japan EMF Information Center, Japan Electrical Safety & Environment Technology Laboratories, Tokyo, Japan, 105-0014
2Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya, Japan, 466-8555

Keywords: Standards, ELF/LF, Completed (published)

Presented by: Kiyotaka Hayashi

We conducted measurements of magnetic flux density generated at more than one frequency by the latest home electric appliances (total of 131 models of 42 products) within the frequency range of 10 Hz - 400 kHz. All the measurement results were well below the reference levels for the general public of ICNIRP Guidelines (2010).

PA-141 [14:30]

Enhanced method for calculating the area of protection in the vicinity of radio base stations

Werner Wiesbeck1, Mario Pauli3, Thorsten Kayser3 & Josef Opitz2
1Karlsruhe Institute of Technology, KIT, Karlsruhe, Germany, 76131
2Federal Network Agency, BNetzA, Mainz, Germany, 55122
3PKTEC GmbH, Schutterwald, Germany, 77746

Keywords: Standards, RF/Microwaves, Completed (published)

Presented by: Josef Opitz

The method presented in this poster for calculating the area of protection in the near field of a mobile radio transmitting antenna is based on a field theoretical method. It works for any antenna, without having to know the structure or details of the antenna. Only one data set is needed with the near field data of the antenna on an envelope surface (e.g. sphere). It is thus suitable for both current and future antenna designs.
PB-2 [14:30]

Effect of Transcranial Magnetic Stimulation in a model of rat’s Hemiparkinson
Leticia Verdugo-Diaz1, Idalia Medina-Salazar1 & David Elias-Viñas2
1Departamento de Fisiologia, Universidad Nacional Autonoma de Mexico, Ciudad de Mexico, Mexico, 04510
2Seccion Bioelectronic, Instituto Politecnico Nacional, Ciudad de Mexico, Mexico, 07360
Keywords: Behavioural, ELF/LF, Work in Progress
Presented by: Leticia Verdugo-Diaz

The effectiveness of Transcranial Magnetic Stimulation (TMS) experiments depends on TMS coil position and frequency of stimulus. This work presents results with a device and a coil constructed especially for the head size of the animals used. We tested repetitive TMS at two frequencies in the rat model of Parkinson's disease. Significant differences were found in different motor behaviors if the stimulation was either inhibitory (1Hz) or stimulatory (5Hz).

PB-4 [14:30]

Early exposure of rotating magnetic fields promotes central nervous regeneration in planarian Girardia sinensis
Xiaomei Wang1 & Xiaoyun Zhang1
1Physiology Department, Shenzhen, , China, 518060
Keywords: Behavioural, Static, Completed (published)
Presented by: Xiaomei Wang

Key words: rotary non-uniform magnetic fields; in vivi; planarian; neural regeneration; stimulating effect; window effect; completed(published). Presented by: Xiaomei Wang

PB-6 [14:30]

Electromagnetic interference with medical devices due to radio waves of TD-LTE using 3.5 GHz band and candidate frequencies for 5G
Takahiro Iyama1, Teruo Onishi1 & Keisuke Nagase2
1NTT DOCOMO, INC., Yokosuka, Kanagawa, Japan, 239-8536
2Kanazawa University Hospital, Kanazawa, Ishikawa, Japan, 920-8641
Keywords: Clinical (diagnostics), RF/Microwaves, Completed (unpublished)
Presented by: Teruo Onishi

Examination of EMI with medical devices is conducted due to radio waves of TD-LTE using 3.5 GHz band and candidate frequencies for 5G. As frequency increase, EMI tends to be less occurred and category of EMI tends to decrease. At 28.5 GHz, all medical devices do not cause EMI in this examination.

PB-8 [14:30]

Device development for application of pulsed electromagnetic fields for hand arthritis therapy
Andrea Fernandez1, Marco Rivera-Gonzalez1, Nazario Felix-Gonzalez1 & Ceferino Maestu1
1Laboratorio de Bio-electromagnetismo, Universidad Politecnica de Madrid, Madrid, Spain, 28223
Keywords: Clinical (therapy), Pulsed, Work in Progress
Presented by: Ceferino Maestu

Arthritis defines hundreds of musculoskeletal disorders, such as Rheumatoid Arthritis (RA) and
Osteoarthritis (OA). Nowadays, Pulsed electromagnetic Fields (PEMFs) are being applied within the field of Rheumatology due to its promising results in tissue regeneration, joint damage and pain relief. This work reflects the obtained results that identified the optimal parameters of PEMF, which enhance cell proliferation; and the development and results of a new and effective musculoskeletal treatment based on a portable therapeutic device.

PB-10 [14:30]
STUDENT PAPER
Development and evaluation of microwave antenna for transcatheter denervation
Shohei Matsuhara¹, Kazuyuki Saito¹, Hiroshi Kawahira¹, Nobuyoshi Takeshita² & Tomoyuki Tajima³
¹Chiba University, Chiba, Japan
²National Cancer Center, Kashiwa, Japan
³The University of Tokyo Hospital, Tokyo, Japan
Keywords: Clinical (therapy), RF/Microwaves, Work in Progress
Presented by: Shohei Matsuhara

In this study, a catheter, which ablates extravascular nerve by the thermal effect of microwave, is introduced. In addition, heating characteristics of the catheter are evaluated by the numerical calculation and the experimental investigation. As a result, temperature distributions around the catheter were revealed and the usefulness of a denervation catheter using microwave was suggested.

PB-12 [14:30]
The multi-phase procedure for EMF limit values excesses verification
Cestnik Breda¹ & Karol Grabner¹
¹Elektroinštitut Milan Vidmar, Ljubljana, Slovenia
Keywords: Dosimetry (computational), ELF/LF, Completed (published)
Presented by: Breda Cestnik

A multi-phase procedure to determine the area of exceeding EMF limit values in the living environment of overhead electric power lines is explained. We present a detailed micro location analysis with combining the EMF calculation results and geo-referenced data graphic components in AutoCAD Map 3D. It enables a good visualisation of the field at the micro location.

PB-14 [14:30]
Numerical estimation of SAR enhancement due to implantable medical device inside human body exposed to external electromagnetic waves - 5G cellular candidate frequency bands -
Takashi Hikage¹, Keita Sakakibara¹, Toshio Nojima¹, Takahiro Iyama² & Teruo Onishi²
¹Hokkaido University, Sapporo, Japan, 0600814
²NTT DOCOMO inc., Yokosuka, Japan
Keywords: Dosimetry (computational), RF/Microwaves, Work in Progress
Presented by: Takashi Hikage

The RF exposure guidelines do recognize that an increased local SAR (Specific Absorption Rate) due to metallic implants is possible. In this study, the effect of implantable medical device in human torso region is examined. A simple layer flat torso phantom is used which the implantable cardiac pacemaker is implanted in. The local SAR dependencies due to exposure frequency bands were presented. Here, we estimate localized SAR at several candidate frequency bands for 5th generation wireless systems (5G).

PB-16 [14:30]
Simulating the power deposition in a simple brain model loaded with magnetite macrospheres and exposed in the near field of a 440 MHz monopole antenna
In order to observe power deposition differences between a pure dielectric tissue and a tissue containing magnetic material when exposed in the near field of a monopole antenna, we designed an approach in ANSYS HFSS software. SAR was computed based not only on electric power deposition, but also taking into account the magnetic absorption. Organs like human brain contain minute quantities of magnetite nanocrystals whose role and presence in connection to RF field exposure is still completely neglected. Although available computational dosimetric tools offer just macroscopic description of magnetic power dissipation, it is worth analyzing simplified situations like an ellipsoidal dielectric brain containing small magnetite spheres.

PB-18 [14:30]

Analysis of the core temperature distribution of the organs exposed to LTE signals
Sangbong Jeon¹, Ae-kyoung Lee¹ & Hyung-Do Choi¹
¹Radio & Satellite Research Division, ETRI, Daejeon, Korea, 34129
Keywords: Dosimetry (computational), RF/Microwaves, Work in Progress
Presented by: Sangbong Jeon

In this paper, we simulated the thermal effects for rats in order to investigate the core temperature elevation due to whole body averaged specific absorption rate of 4 W/kg at 1.76 GHz long term evolution (LTE) RF signal bands. The temperature rise due to RF exposure depends on the location of the organ, even the same organ. Therefore, the core temperature distribution of the organs in RF exposure was calculated, and the average temperature and the standard deviation were obtained.

PB-20 [14:30]

Alvar: Adult whole-body anatomic phantom for computational dosimetry
Ilkka Laakso¹, Tuukka Lehtinen¹ & Marco Soldati¹
¹Department of Electrical Engineering and Automation, Aalto University, Espoo, Finland, 02150
Keywords: Dosimetry (computational), All Frequencies, Work in Progress
Presented by: Ilkka Laakso

This paper presents an anatomically realistic voxel model of an adult male and its application to modelling power-frequency electric and magnetic field exposure. The phantom, Alvar, is based on anatomic atlases, weights 72 kg, and is 176 cm tall. Alvar and three other anatomic adult male phantoms were used for dosimetric analysis of uniform electric and magnetic field exposure at the frequency of 50 Hz, and the induced electric fields were shown to be in good agreement. Alvar is directly compatible with freely available BodyParts3D anatomic atlas, which allows easy identification of anatomic structures for dosimetry modelling.

PB-22 [14:30]

Evaluation of heating effects due to millimeter wave exposure in oblique incidence
Kun Li¹, Kensuke Sasaki¹ & Soichi Watanabe¹
¹National Institute of Information and Communications Technology, Koganei, Japan, 184-8795
Keywords: Dosimetry (computational), RF/Microwaves, Work in Progress
Presented by: Kun Li

In order to realize the ultra-high data wireless communication, millimeter wave frequencies over 6 GHz are anticipated to be used in many applications, such as 5G terminals, wireless gigabit and automotive radar. As the basic restriction in safety guideline, power density needs to be related with the temperature elevation of skin tissue exposed to electromagnetic waves at MMW bands. In this
work, we analyzed the heat potential of incident and absorption power density from 6 GHz to 1 THz for cases of oblique incidence. The results show that absorption power density indicates a high correlation with skin surface temperature elevation regardless of frequency, incident angle and polarization effects.

PB-24 [14:30]

Ad hoc simplified dosimetry analysis of in-vivo EMF exposure of rats and mice in reverberation chamber

Antonio Sarolic\(^1\)

\(^1\)Chair of Applied Electromagnetics - EMLab, FESB, University of Split, Split, Croatia, HR-21000

Keywords: Dosimetry (computational), RF/Microwaves, Concept

Presented by: Antonio Sarolic

We previously proposed a novel method for calculating the whole-body SAR of biological objects in reverberating environment, based on reverberation chamber and power balance theory. This method is applied here to demonstrate an alternative approach to dosimetry analysis of the setup described in recent publications on the study conducted by the National Toxicology Program of the National Institute of Environmental Health Sciences (two-year cancer bioassay study on rodents exposed in reverberation chambers), as an interesting example where this method perfectly fits to the problem.

PB-26 [14:30]

Realistic EMF exposure assessment of 5G massive MIMO base stations

Bo Xu\(^1\), Björn Thors\(^1\), Davide Colombi\(^1\), Elif Degirmenci\(^1\), Paramananda Joshi\(^1\) & Christer Tornevik\(^1\)

\(^1\)Ericsson Research, Ericsson AB, Stockholm, Sweden, 164 80

Keywords: Dosimetry (computational), RF/Microwaves, Work in Progress

Presented by: Bo Xu

The traditional approach to assess RF EMF exposure, which uses the theoretical maximum output power, would lead to very conservative compliance boundaries for a 5G base station (BS) employing massive MIMO. Here, we start by giving the analytical box-shaped compliance boundary for theoretical maximum output power. Then, a statistically-conservative power reduction factor is introduced considering TDD downlink/uplink ratio, BS utilization, and scheduling time. As an example, the theoretical compliance boundaries of a 5G massive MIMO BS product are given. Considering the proposed power reduction factor, the actual compliance boundaries are also given for the 95th percentile of all possible exposure scenarios, according to IEC 62232:2017.

PB-28 [14:30]

Evaluation of exposure to electromagnetic field emitted by RFID HF desktop readers

Patryk Zradożński\(^1\), Jolanta Karpowicz\(^1\) & Krzysztof Gryz\(^1\)

\(^1\)Central Institute for Labour Protection, National Research Institute (CIOP-PIB), Warszawa, Poland, 00-701

Keywords: Dosimetry (computational), RF/Microwaves, Work in Progress

Presented by: Patryk Zradożński

Radio frequency identification (RFID) is the most common and the fastest evolving wireless identification technology. The thermal effects of exposure to electromagnetic field were evaluated by numerical simulations focused on the specific absorption rate (SAR) values in virtual phantom present in the vicinity of RFID HF desktop readers operating at 13.56 MHz, at various reading ranges. The results of numerical simulations showed that SAR values from RFID HF desktop readers may exceed general public and occupational exposure limits, during at least 6 minute exposure, near the readers operating at maximum reading range of 150 cm.
PB-30 [14:30]
STUDENT PAPER

Numerical analysis of a three-compartment head model subjected to variation of input parameters
Anna Šušnjara¹, Mario Cvetkovic¹, Dragan Poljak¹ & Hrvoje Dodig²
¹Department of Electronics and Computer Science, University of Split, Split, Croatia, 21000
²Department of Naval Electronics and Information Technology, University of Split, Split, Croatia, 21000

Keywords: Dosimetry (computational), RF/Microwaves, Work in Progress
Presented by: Anna Šušnjara

A stochastic framework for the assessment of the induced electric field in the three-compartment model of human head is presented. The relative permittivity and conductivity of scalp, skull and brain are modelled as random variables. The statistical moments are calculated by means of a stochastic collocation method. The sparse grid interpolation in the multidimensional random space resulted in a small number of simulations. The sensitivity analysis of input parameters indicate the higher overall impact of relative permittivity over the tissue conductivity on the induced field in the brain. When considering the induced field along head axis, the results show the impact of parameters’ variability to be distributed unevenly.

PB-32 [14:30]

Quantification of thermoelastic phenomena generated from high peak power radio frequency exposure utilizing the probe beam deflection technique (PBDT)
Ronald Barnes¹, Kaitlin Nelson¹, Samuel Johnson¹, Jeffrey Whitmore¹, Jason Payne¹ & Bennett Ibey¹
¹711 Human Performance Wing, Human Bioeffects Division, Radio Frequency Branch, Ft. Sam Houston, TX, USA, 78234

Keywords: Dosimetry (measurements), RF/Microwaves, Work in Progress
Presented by: Ronald Barnes

High average power (HAP) radio frequency exposures illicit a thermal response in tissue. High peak power microwave (HPPM) exposures with pulse durations less than a few µs have been shown to produce thermoelastic responses. In HPPM exposure conditions, the use of piezoelectric transducers becomes difficult as the transducer is susceptible to EMI and perturbs the electromagnetic field to be measured. An all optical sensor is desired to provide passive EMI immune measurement of HPPM induced thermal and acoustic responses. In this work, we have demonstrated the use of an optical dosimetry technique, namely the probe beam deflection technique (PBDT), to measure and quantify the acoustic phenomena generated by HPPM exposure.

PB-34 [14:30]

Electromagnetic field in the environment - measurements and monitoring in Poland
Pawel Bienkowski¹ & Joanna Podlaska²
¹Wroclaw University of Technology, Wroclaw, Poland, 50-370
²Regional Inspectorate for Environmental Protection, Lodz, Poland, 90-374

Keywords: Dosimetry (measurements), RF/Microwaves, Completed (published)
Presented by: Pawel Bienkowski

The brief overview of legal bases and EMF measurements in the environment presented in the work shows that in Poland this issue has been known for years, research is conducted on a large scale. The their results are widely available. The authors assail with questions about the impact of base stations on the environment, the legal basis of measurements or even the duty to take measurements. Analysis of the results of research presented or referred in the article indicates that the level of electromagnetic background is well below the EMF acceptable levels in the environment. This does not mean, that in places accessible to the public, there is no EMF intensity close to or even exceeding the admissible values.
Comparison between numerically and experimentally assessed skin temperature elevations for localized RF exposure at frequencies above 6 GHz

Davide Colombi¹, Bo Xu¹, Christer Tornevik¹, Björn Thors¹, Andreas Christ², Marvin Ziskin³, Kenneth Foster⁴ & Quirino Balzano⁵

¹Ericsson Research, Ericsson, Stockholm, Sweden, 11222
²Research Consultant, Cabo Frio, Brazil
³Center for Biomedical Physics, Temple University Medical School, Philadelphia, PA, USA
⁴University of Pennsylvania, College Park, PA, USA
⁵University of Maryland, College Park, MD, USA

Keywords: Dosimetry (measurements), RF/Microwaves, Completed (unpublished)

Presented by: Davide Colombi

Frequency bands above 10 GHz are key components of the next generation mobile networks, 5G, which are expected to be commercially available before 2020. Such frequencies have been the target of the ongoing revision of the IEEE C95.1 exposure standard. In this study the draft exposure limits are evaluated in terms of skin temperature elevation both numerically and experimentally. The results indicate that simple thermal models can be successfully used to evaluate temperature elevation in the investigated frequency range although they might overestimate the skin temperature value for longer exposure time.

EMPIR European project Vector SAR on SAR measurement using vector probes

Allal Djamel¹ & Joe Wiart²

¹Laboratoire National de Métrologie et d’Essais, Trappes, France, 78197
²Chaire C2M, Telecom Paristech, Paris, France, 75013

Keywords: Dosimetry (measurements), RF/Microwaves, Work in Progress

Presented by: Joe Wiart

Specific absorption rate (SAR) must be evaluated during the production of mobile telecommunication devices. Vector SAR project will provide the methods, software tools and datasets required for traceable calibration and uncertainty analysis of vector probe array systems that automatically determine the 3D electromagnetic field and SAR mapping using amplitude and phase information through a 3D reconstruction algorithm. This work will also contribute to the international standard IEC 62209-3 and future standardisation of fifth generation (5G) devices within IEC Technical Committee TC 106.

WITHDRAWN

Attempt for determination the power absorption of nanomagnetic materials by reflectometry

Ivan Gresits¹, ², Ferenc Simon² & György Thuroczy¹

¹Department of Non-Ionizing Radiation, National Public Health Institute, Budapest, Hungary, 1221
²Department of Physics, Budapest University of Technology and Economics, Budapest, Hungary, 1111

Keywords: Dosimetry (measurements), RF/Microwaves, Completed (unpublished)

Presented by: György Thuroczy

Nanomagnetic hyperthermia is intensively studied with the prospect of cancer therapy. A major challenge is to determine the heat absorbed during in vivo conditions and conventional methods are either invasive or inaccurate. We present a method which yields directly the heat absorbed during hyperthermia: it is based on accurately measuring the quality factor change of a resonant radiofrequency (RF) circuit which is employed for the irradiation.
PB-44 [14:30]

Improving the accuracy of personal radiofrequency measurements using a novel body-worn measurement device and comparison with measurements using exposimeters

Anke Huss¹, Stefan Dongus², Reza Aminzadeh³, ⁴, Arno Thielens³, ⁵, Sam Agneessens³, ⁴, Patrick Van Torre³, ⁴, Rene De Seze⁶, Elisabeth Cardis⁷, Marloes Eeftens², Wout Joseph³, ⁴, Roel Vermeulen¹ & Martin Röösli²

¹University of Utrecht, Utrecht, the Netherlands
²University of Basel, Basel, Switzerland
³University of Ghent, Ghent, Belgium
⁴IMEC, Ghent, Belgium
⁵Berkeley Wireless Research Center, Berkeley, CA, USA
⁶National Institute for Industrial Environment and Risks, Verneuil-en-Halatte, France
⁷Barcelona Institute for Global Health, Barcelona, Spain

Keywords: Dosimetry (measurements), RF/Microwaves, Work in Progress

Presented by: Anke Huss

The aim of this study is to compare measurement results of a newly developed prototype of a multi-band body-worn distributed-exposimeter (BWDM) with two commercially available personal exposimeters (EXPOM and EME SPY 200). We are currently conducting field measurements in various indoor and outdoor microenvironments in Belgium, Spain, France, Netherlands and Switzerland. Our data will allow the comparison of the measurements of the three different exposimeters and will be informative and better understanding and interpretation of existing epidemiological research results.

PB-46 [14:30]

A comparison of the RF-EMF in educational facilities and its surrounding areas in South Korea

Taewook Hwang¹, Geojung Kim¹ & Kyuhyeon Kim¹

¹Radio Wave Environment Team, Korea Communications Agency, Naju, Korea, 58324

Keywords: Dosimetry (measurements), RF/Microwaves, Completed (unpublished)

Presented by: Taewook Hwang

This paper describes the RF-EMF levels in/around kindergartens and elementary schools. The RF-EMF of kindergarten and elementary school was average 0.09 V/m, which was much lower than the ICNIRP reference levels in South Korea. In addition, the RF-EMF of roads approaching these facilities was average 0.19 V/m, higher than the RF-EMF of kindergartens and elementary schools, but below the ICNIRP guidelines. This result is expected to be due to the high density of mobile communication base stations in South Korea. This paper is considered very important with its high reliability to use in epidemiological researches and prediction model for EMF exposure including researches on EMF health effects.

PB-48 [14:30]

STUDENT PAPER

Investigation of E-field strength from mobile phone base stations and transmitted power from ⁴th generation mobile phones

Shota Kurosaki¹, Masaki Hagiwara¹, Masao Taki¹, Atsuko Aimoto¹, Miwa Ikuyo¹, Kaoru Esaki¹ & Kanako Wake²

¹Department of Electrical and Engineering, 1 - 1 Minami-osawa, Hachioji-shi, Japan, 192-0397
²Electromagnetic Compatibility Laboratory, National Institute of Information and Communications Technology, Tokyo, Japan, Japan, 184-8795

Keywords: Dosimetry (measurements), RF/Microwaves, Review, Commentary, Recommendation, Evaluation

108
Presented by: Shota Kurosaki

We measured 4G Tx power and the total downlink E-field strengths during drive around Tokyo and Chiba area in Japan for about 8 hours. The association between 4G Tx power and the downlink E-field strengths was investigated. The total downlink E-field strength was high and 4G Tx power is low in the Center of the Capital while the total downlink E-field strength was low and the 4G Tx power is high in residential/rural area.

PB-50 [14:30]

A method to analyze isotropy of electric field probe consisting of identical small dipoles
Byeongyoon Lee¹ & Sang-Hwa Yi¹
¹Electrical Environment Research Center, Korea Electrotechnology Research Institute, Changwon, Korea, 51543
Keywords: Dosimetry (measurements), RF/Microwaves, Review, Commentary, Recommendation, Evaluation
Presented by: Sang-Hwa Yi

A method is presented to analyze the isotropy of electric field probe consisting of a number of identical small dipoles whose radiation patterns are torus shapes and which are arbitrarily positioned and oriented.

PB-52 [14:30]

Reduction methods of ELF-MF radiated by high-voltage underground transmission lines
Seungwoo Lee¹, Geun Teak Yeo¹, Hong Lae Kim¹ & Ho Sung An²
¹Transmission & Substation Construction Dept., Korea Electric Power Corporation, Naju-si, Korea, 58217
²Transmission & Substation Dept., Korea Electric Power Corporation Research Institute, Daejeon-si, Korea, 34056
Keywords: Dosimetry (measurements), ELF/LF, Work in Progress
Presented by: Seungwoo Lee

We suggested the reduction methods of ELF-MF exposed by high-voltage underground transmission lines in this research. To avoid the ELF-MF exposure from the underground cables, we analyzed the effect according to the reduction methods which are the cable phase array, shielding materials, shunt effect or eddy current effect, etc.

PB-54 [14:30]

Near-field power density for MPE evaluation of 5G wireless devices
Maryna Nesterova¹
¹R&D 5G solutions, Aprel Inc., Ottawa, Ontario, Canada, K2K 3J1
Keywords: Dosimetry (measurements), RF/Microwaves, Work in Progress
Presented by: Maryna Nesterova

The evaluation of a new generation of 5G wireless devices requires advanced methods in the near-field measurement technologies. The high-speed and high-intensity modulated signal have to be measured in the close proximity to a device to evaluate power density for safety matters. Because the near-field zone processes have complex formation the testing methodologies should consider the electric E and magnetic H field vector orientations and the beam-forming factors. The authors present a new two-probe method as a solution for the 5G power density evaluation.

PB-56 [14:30]

Vortical motion of liquid medium in small, shallow, containers with different end wall temperatures
Alessandra Paffi¹, Francesco Feo¹, Micaela Liberti¹, Francesca Apollonio¹, Asher Sheppard² & Quirino
Using mica microparticles to detect liquid flow, curvilinear mass flow was observed in a shallow liquid medium using a rectangular chamber with end walls held at a 2 K temperature difference, resembling conditions in some in vitro RF biological studies. Thermal and fluid dynamics simulations of the velocity field gave a maximum velocity of about 6×10⁻⁴ m/s. These observations indicate that vortices could occur in some in vitro RF experiments. Prolonged non-Brownian motion in the cell microenvironment might bias biological outcomes because nutrient flow in RF-exposed medium cannot be replicated in controls. Future work for detection of liquid motion in Petri dishes is planned.

PB-58 [14:30]

Development of 28 GHz band exposure equipment for studies on thermal perception thresholds of biological effects exposed to millimeter-wave at 5th generation wireless systems candidate frequency band

Keita Sakakibara¹, Tetsuya Sekiguchi¹ & Takashi Hikage¹

¹Hokkaido University, Sapporo, Japan, 0600814

Keywords: Dosimetry (measurements), RF/Microwaves, Work in Progress

Presented by: Keita Sakakibara

Authors developed a radio-wave exposure equipment for studies on thermal perception thresholds of biological effects exposed to millimeter-wave at 28 GHz band that is 5th generation wireless systems (5G) candidate frequency band. To achieve high duty RF exposure on living body at 28 GHz required, we newly designed a lens antenna that can irradiate focused beam. In order to obtain basic exposure performance of the developed equipment, we used physical phantom that simulated human’s skin and achieved exposure experiments of temperature rise measurements during at 28 GHz band millimeter-wave exposure.

PB-60 [14:30]

Non-sinusoidal magnetic field exposure: Comparison of time domain assessment methods proposed in the Non-binding guide for practical implementation of EU directive 2013/35/EU

Gernot Schmid¹, 2, Rene Hirtl¹ & Theodoros Samaras²

¹EMC & Optics, Seibersdorf Laboratories, Seibersdorf, Austria, A-2444
²Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece, GR-54124

Keywords: Dosimetry (measurements), ELF/LF, Work in Progress

Presented by: Gernot Schmid

Non-sinusoidal magnetic fields at common workplaces were measured and exposure was comparatively assessed by the Weighted Peak Method in time domain (WPM-TD) and an alternative time domain assessment method (TDA method) published in the non-binding guide for practical implementation of the “workers directive” 2013/35/EU. It could be demonstrated that the TDA method systematically and substantially (up to 11.7 dB) underestimates exposure compared to the WPM-TD (indicated as the reference method in 2013/35/EU). We therefore recommend to remove this method from the non-binding guide as soon as possible.

PB-62 [14:30]

Radio frequency electromagnetic fields exposure assessment in different environments in Slovenia
In this study, we investigated exposure to Radio frequency (RF) electromagnetic fields (EMF) in different environments in Slovenia (urban areas, smaller towns, rural areas). In total, we performed 60 measurements, 20 for each environment. Measurements were band selective, this means 11 most important frequency bands, where most of the systems operate were measured (FM, DVB-T, GSM ...). The measured values were compared with the reference values according to ICNIRP guidelines for general public. The results showed that the measured values are quite low and generally comparable with the results of similar studies [2]. The highest total RF-EMF exposure was below 0.7 percent according to ICNIRP guidelines for general public.

PB-64 [14:30]

Measurement of EMF exposure around small cell base station installations
Marthinus Van Wyk¹, Christo Visser¹ & Christiaan le Roux¹
¹Alphawave Mobile Network Services, Stellenbosch, South Africa, 7600

Keywords: Dosimetry (measurements), RF/Microwaves, Completed (unpublished)
Presented by: Marthinus Van Wyk

Small cell base stations are used frequently as a mobile network deployment method. A measurement program was conducted to perform EMF exposure measurements around small cell base station installations. Results are compared to available data around base stations in general.

PB-66 [14:30]

Cancellation effect is present in high-frequency bipolar pulse treatments and depends on electroporation buffer composition
Janja Dermol-Cerne¹, Tamara Pezić¹, Matej Reberšek¹ & Damijan Miklavčič¹
¹University of Ljubljana, Faculty of Electrical Engineering, Ljubljana, Slovenia, SI-1000 Ljubljana

Keywords: Electroporation, Pulsed, Completed (unpublished)
Presented by: Janja Dermol-Cerne

In electrochemotherapy and irreversible electroporation as ablation technique, 100 µs long pulses are applied at 1 Hz which causes muscle contractions and pain. Recently, bursts of short bipolar pulses (H-FIRE) were suggested as an ablation technique with no muscle contractions. Independently of H-FIRE studies, cancellation effect was observed with nanosecond pulses, where the effect of the first pulse is partially canceled by the second pulse of reverse polarity. In our study, we focused on cancellation effect in the range of pulses, usually used in HFIRE treatments. We varied pulse duration and delay between pulses. Our results show that cancellation effect is also present with HFIRE pulses, and is electroporation buffer dependent.

PB-68 [14:30]

STUDENT PAPER
Flexible conductive polymer microelectrode arrays for electropulsation, neurostimulation and electroporation in vitro and in vivo
Gerwin Dijk¹, Hermanus Ruigrok² & Rodney P. O'Connor²
¹Bioelectronics, Ecole des Mines de Saint-Etiennes - Panaxium, Gardanne, France, 13120
²Bioelectronics, Ecole des Mines de Saint-Etiennes, Gardanne, France, 13120

Keywords: Electroporation, Pulsed, Work in Progress
Presented by: Gerwin Dijk

Organic conductive polymers are highly versatile materials that have been widely adopted in commercial electronics as display technology, transistors, LEDs and solar cells. Our research is exploring their use for interfacing biology with electronics. We have developed microelectrode array
devices using the conductive polymer PEDOT:PSS for electropulsation, neurostimulation and electroporation investigations in vitro and in vivo. Here we will present our work using plastic bioelectronics to develop multiwell electrode arrays for in vitro studies using live cell imaging and flexible, implantable electrodes that are suitable for studying electropulsation effects with in vivo imaging and electrophysiology.

PB-70 [14:30]
STUDENT PAPER

Cell electroporation enhanced by conductive nanoparticles
Amina Ghorbel¹, Lluis M. Mir¹ & Tomás García-Sánchez¹
¹UMR 8203, CNRS, Gustave Roussy, Villejuif, France, 94805
Keywords: Electroporation, Pulsed, Work in Progress
Presented by: Amina Ghorbel

In order to optimize the outcome of Electroporation, a novel approach based on the use of conductive nanoparticles, is proposed to enhance locally the efficacy of the electric field intensity in the targeted biological sample.

PB-72 [14:30]

Cells modeling and design characterization of electropulsation microchambers for linear and non-linear optical microspectroscopy
Caterina Merla¹,², Micaela Liberti³, Paolo Marracino³, Adeline Muscat², Francesca Apollonio³ & Lluis M. Mir²
¹ENEA SSPT Division of Health Protection Technologies, Rome, Italy, 00123
²CNRS UMR 8203, Gustave Roussy, Univ. Paris-Sud, Université Paris Saclay, Villejuif, France, 94805
³Department of Information Engineering Electronic and Telecommunications, Sapienza University of Rome, Rome, Italy, 00184
Keywords: Electroporation, Pulsed, Work in Progress
Presented by: Caterina Merla

Mechanisms underlining the cell membrane permeabilization and consequent cellular and intracellular effects are still debated. To shed light on the involvement of phospholipids and water molecules rearrangements in this phenomenon, linear and non-linear optical imaging and microspectroscopy seem particularly appropriate. To combine optical detection with electric pulses used for cell permeabilization, an optimal delivery setup is presented in this paper. The dosimetry of the fabricated microchamber was analyzed in time domain. Mesodosimetry was also performed to study electric field distribution at cell level. These data give interesting information for interpreting cellular microspectroscopic results.
PB-74 [14:30]

Time-domain finite-element modeling for analysis of in vivo electroporation-based treatments
Matevz Pintar¹, Janez Langus¹, Matej Kranjc², Erik Brecelj³, Ibrahim Edhemovic³, Gregor Serša³, Tomaz Rodič¹, Tomaz Sustar¹, Damijan Miklavčič², Tadej Kotnik² & Bor Kos²
¹c3m d.o.o., Ljubljana, Slovenia, 1000
²University of Ljubljana, Ljubljana, Slovenia, 1000
³Institute of Oncology Ljubljana, Ljubljana, Slovenia, 1000
Keywords: Electroporation, Pulsed, Completed (unpublished)
Presented by: Bor Kos

Electrochemotherapy and irreversible electroporation are two methods which rely on the mechanism of electroporation to achieve their clinical goal. For successful treatment, coverage of the target tissue with sufficiently strong electric field is the most important prerequisite. Here we present a time-dependent model of electroporation, which takes into account the complex time course of conductivity change due to tissue electroporation and apply the model to a case of in vivo electroporation treatment.

PB-76 [14:30]

Calcium ions with nanosecond pulsed electric fields in human colon adenocarcinoma cells with drug resistance
Nina Rembiałkowska¹, ², Anna Choromańska¹, Anna Szewczyk³, Olga Michel¹, Jolanta Saczko¹, ² & Julita Kulbacka¹, ²
¹Department of Medical Biochemistry, Medical University, Chalubinskiego 10 St., 50-368 Wroclaw, Poland
²Department of Molecular and Cellular Biology, Medical University, Borowska 211 A, 50-556 Wroclaw, Poland
³Department of General Zoology, Zoological Institute, University of Wroclaw, Sienkiewicza 21 St., 50-335 Wroclaw, Poland
Keywords: Electroporation, Pulsed, Completed (unpublished)
Presented by: Nina Rembiałkowska

Calcium is one of the most important factors in cell proliferation, differentiation and cell death (apoptosis or necrosis). Manipulation of calcium levels using electroporation can cause different effect on normal and malignant cells. Efficiency and safety of electroporation combined with Ca⁡²⁺ ions was examined in two human colon adenocarcinoma cell lines: sensitive- LoVo and drug resistant-LoVo/DX. As normal control CHO-K1 cells were applied. The results show that nsPEF supported by Ca⁡²⁺ is cytotoxic in particular for resistant LoVo/DX cells, less cytotoxic in case of LoVo cells and simultaneously safe for normal cells. These results may potentially be important for treatment of colon adenocarcinoma using calcium nsPEF.

PB-78 [14:30]

Does RF exposure increase delivery of lead from maternal blood to fetus?
Yong-Han Lee¹, Eunae Burm², Jong Hyuk Choi¹, Hee-Sun Yang¹, Sanghyuk Bae¹, Ho-Jang Kwon¹, Eun-Hee Ha³, Hyesook Park⁴, Yangho Kim⁵, Yun-Chul Hong⁶, Ae-kyoung Lee⁶, Hyung-Do Choi⁶ & Mina Ha⁸
¹Department of Preventive Medicine, Dankook University, Cheonan, Korea
²Department of Nursing, Moonkyung College, Moonkyung, Korea
³Department of Occupational and Environmental Medicine, Ewha Womans University, Seoul, Korea
⁴Department of Preventive Medicine, Ewha Womans University, Seoul, Korea
⁵Department of Occupational and Environmental Medicine, Ulsan University, Ulsan, Korea
⁶Department of Preventive Medicine, Seoul National University, Seoul, Korea
⁷Radio Technology Research Department, Electronics and Telecommunications Research Institute, Daejeon, Korea
⁸Environmental Health Policy Division, Ministry of Environment, Sejong, Korea
Keywords: Epidemiology, RF/Microwaves, Work in Progress
Presented by: Yong-Han Lee
We measured individually maternal RF exposure during pregnancy and lead concentration of umbilical cord blood and maternal blood at delivery. The more RF exposure during pregnancy, the greater likelihood that more lead was transferred from mother to fetus through the placenta. This result suggests that RF affects function of placenta or causes conditions that more lead deliver to fetus. In addition, RF exposure more affected pregnant women with null type of GSTT1 gene involved in metabolism of toxic substances. This finding supports that RF exposure during pregnancy can be hazardous in women vulnerable to toxic materials.

PB-80 [14:30]

Electroconvulsive therapy and amyotrophic lateral sclerosis

Gabor Mezei\(^1\), Edmund Lau\(^1\) & Leeka Kheifets\(^2\)

\(^1\)Health Sciences, Exponent, Menlo Park, California, USA, 94025
\(^2\)Department of Epidemiology, University of California, Los Angeles, Los Angeles, California, USA, 90095

Keywords: Epidemiology, ELF/LF, Work in Progress

Presented by: Gabor Mezei

To evaluate a potential association between exposure to electric shocks and development of amyotrophic lateral sclerosis (ALS), we conducted a cohort study using a systematic sample of approximately one million beneficiaries enrolled in the U.S. Medicare health insurance program from 1997 to 2015. Using time-varying proportional hazards modelling, we compared ALS occurrence among patients receiving electroconvulsive therapy (ECT), a source of exposure to electric currents in the brain without significant exposure to magnetic fields, given as a treatment for some psychiatric conditions, to ALS occurrence among patients receiving no ECT, but diagnosed with the same psychiatric conditions.

PB-82 [14:30]

Modelling the exposure of children to extremely low frequency magnetic fields in the ELFSTAT project

Marta Bonato\(^1\), Marta Parazzini\(^1\), Emma Chiaramello\(^1\), Serena Fiocchi\(^1\), Laurent Le Brusquet\(^2\), Isabelle Magne\(^3\), Martine Souques\(^3\), Martin Röösli\(^4\) & Paolo Ravazzani\(^1\)

\(^1\)Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni, Consiglio Nazionale delle Ricerche, Milan, Italy
\(^2\)Département Signal et Statistiques, Centrale Supélec, Paris, France
\(^3\)Medical Studies Department of EDF, Electricité de France, Paris, France
\(^4\)Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland

Keywords: Human, ELF/LF, Completed (published)

Presented by: Paolo Ravazzani

ELFSTAT project, founded by the French ANSES (2015-2019, Grant agreement n. 2015/1/202), aims at characterizing children's exposure to extremely low frequency magnetic fields (ELF-MF) in real exposure scenarios using stochastic approaches. In this paper, a stochastic approach for extracting information from dataset of recorded ELF-MF signals is presented. The aim is to obtain a better characterization and description of the phenomenon and to investigate on possible correlations or different features between various data subsets.

PB-84 [14:30]

STUDENT PAPER

Does Extremely Low Frequency Magnetic Fields stimulations of the vestibular system modulate postural control in humans?

Nicolas Bouisset\(^1,2\), Sebastien Villard\(^1,3\), Daniel Goulet\(^7\), Michel Plante\(^7\), Martine Souques\(^6\), François Deschamps\(^5\), Genevieve Ostiguy\(^7\), Jacques Lambrozo\(^6\) & Alexandre Legros\(^1,2,3,4,8\)

\(^1\)Human Threshold Research Group, Lawson Health Research Institute, London, ON, Canada
\(^2\)Department of Kinesiology, Western University, London, ON, Canada
Exposure to extremely low frequency magnetic fields (ELF-MF) induces electric fields and currents within the human body that modulate nervous system functions. Although still a matter of debate, there are evidences that the vestibular system could respond to ELF-MF. It is well established however that specific electrical stimulations of the vestibular system trigger specific postural outcomes. This work investigates the vestibular response to ELF-MF and alternating electrical currents through their impact on human postural sway.

PB-86 [14:30]

Determination of external voltage level for causing heart fibrillation in human body

Stefan Cecil¹, Richard Überbacher¹, Michael Koch² & Michael Bartonek²

¹EMC&Optics, Seibersdorf Laboratories, Seibersdorf, Austria, 2444
²Eaton Industries Austria GmbH, Schrems, Austria, 3943

Keywords: Human, ELF/LF, Completed (unpublished)

Presented by: Stefan Cecil

In this project the current flow through the human body on two different paths was investigated. Simulations with the body model "Duke" were done, to determine the flowing electric current through the heart. The results of the simulations were compared to the results from the corresponding measurements with rabbit hearts, where the fibrillation threshold was evaluated. With the results of the simulations and measurements the external voltage level for heart fibrillation in the human body could be determined.

PB-88 [14:30]

Effects of electromagnetic fields from Long Term Evolution on awake electroencephalogram in healthy humans

Setsu Nakatani-Enomoto¹, Madoka Yamazaki², Hiroyuki Enomoto¹ & Yoshikazu Ugawa¹

¹Department of Neurology, Fukushima, Japan, 960-1295
²Department of Health Science, Saitama, Japan, 355-8501

Keywords: Human, RF/Microwaves, Completed (unpublished)

Presented by: Setsu Nakatani-Enomoto

We analyzed the effects of Long Term Evolution (LTE)-like EMW for 30 min on awake electroencephalogram (EEG) in healthy adult humans. The maximum local SAR averaged over 10 g mass was 2.0 W/kg. Thirty-eight subjects aged 20 to 36 years old participated in this study. The power spectra of θ, α and β frequency ranges at eight cortical sites were analyzed. We showed enhancement of θ and α waves after both real and sham exposures. The results may be consistent with the drowsiness of the subjects. However, EEG power spectra were not affected by the stimulation condition. We conclude that LTE-like exposure for 30 min has no detectable effects on awake EEGs in healthy humans.

PB-90 [14:30]

STUDENT PAPER

Alpha band analysis in resting EEG after exposure to radiofrequency signal (900 MHz): EEG/MEG study combined with an anatomic MRI

Jasmina Wallace¹, ², Lydia Yahia-Cherif³, ⁴, Laurent Hugueville³, ⁴, Christophe Gitton³, ⁴ & Brahim

Keywords: Human, ELF/LF, Work in Progress

Presented by: Nicolas Bouisset
With the extensive use of mobile phones (MP) several studies have been realized to understand the effects of radiofrequency exposure on brain activity. The results show changes in the alpha band spectral power. To better understand the cortical structures involved in these changes after MP exposure (900 MHz), we carried out electroencephalography and magnetoencephalography recording followed by the anatomical magnetic resonance imaging on healthy volunteers. Participants were selected according to inclusion criteria. They were healthy males or females, aged between 18 and 35, non-smokers and with regular sleep habits. Data analyses of 10 subjects are still under process and ready results will be presented at the conference.

PB-92 [14:30]
Antenna with directional radiation pattern used in microwave ablation
Pawel Cala¹ & Pawel Bienkowski¹
¹Wroclaw University of Technology, Wroclaw, Poland, 50-370
Keywords: In vitro, RF/Microwaves, Work in Progress
Presented by: Pawel Cala
Microwave (MWA) ablation with a double slot constructed on the basis of a coaxial antenna with a matching load. Simulations were carried out in the CST environment. It has been shown that it is possible to construct a microwave ablation antenna with a directional radiation pattern providing a VSWR <1.5 for the ISM 2.4GHz band. Directionality of the antenna will allow heating only selected tissues without overheating neighboring ones. Such a solution can definitely improve the treatment process and not expose the patient to postoperative complications (burns). In further work, the authors will focus on producing a prototype of one antenna and performing a simulation of an antenna system consisting of at least three microwave antennas.

PB-94 [14:30]
Visualisation of an nsPEF induced calcium wave using the genetically encoded calcium indicator GCaMP in U87 human glioblastoma cells
Lynn Carr¹, Sylvia M. Bardet¹ & Rodney P. O'Connor²
¹University of Limoges, Limoges, France, F-87000
²IMT Mines Saint-Etienne, Gardanne, France, F-13541
Keywords: In vitro, Pulsed, Completed (published)
Presented by: Lynn Carr
This study looks at the application of genetically encoded calcium indicators (GECIs), to investigate the spatiotemporal nature of nsPEF-induced calcium signals, using fluorescent live cell imaging. GECIs can be targeted to different cellular locations and, by using a plasma membrane expressed GECI, we demonstrate calcium entry into the cell as a wave, initiated at the cathode side, following nsPEF treatment. This wave was masked by commercially available chemical, cytosolic, calcium indicators.

PB-96 [14:30]
Local high frequency electromagnetic field, nanoparticles and piezoelectric acoustic
Our aim was to study the possible therapeutic effects of a co-exposition for 72h to nanoparticles (SWCNTs), electromagnetic field (EMF, 100kHz, 10V square signal) at non-thermal level and piezoelectric acoustic emission to have a synergic local toxic effect on an in vitro model of Glioblastoma. C6 rat glioma cells were randomly assigned to four groups: Sham/Sham, Sham/Nano exposed Sham/Field exposed, and Nano/Field exposed. Results showed a decrease in the number of the cells co-exposed compared to the control group. However, the average survival rate of the cells was still high over the whole sample; and this combination could be interpreted either as all or nothing local effect, or more diffuse inhibition of the cell proliferation.

PB-98 [14:30]

In-vitro study of current induced ventricular fibrillation in rabbits
Michael Koch1, Michael Bartonek1, Jiri Silny2, Bruno Podesser2 & David Santer2
1Innovation, Codes and Standards, EATON Industries GmbH, Vienna, Austria, 1210
2Department of Biomedical Research, Medical University of Vienna, Vienna, Austria, 1090
3FEMU, RWTH Aachen, Aachen, Germany, 62052
Keywords: In vitro, ELF/LF, Completed (unpublished)
Presented by: Michael Koch

Ventricular fibrillation due to an electric current is one of the most dangerous incidents which can occur in an electrical system. In this paper results on the investigation of current induced ventricular fibrillation at different frequencies (up to 100kHz) are reported. One of the main targets was to develop a flexible and adaptable experimental system based on in-vitro experiments of the isolated rabbit heart within a working heart model approach. In the chosen setup the heart can be electrically stimulated, driven into a sustained fibrillation state and can be defibrillated afterwards. The research project is funded by the Austrian Government (FFG, project no. 841285).

PB-100 [14:30]

Protective effects of radiofrequency on β-amyloid-induced toxicity in human neuroblastoma cells
Anna Sannino1, Stefania Romeo1, Olga Zeni1, Letizia Venturini2, Giovanni Ricevuti2, Salvatore Caorsi3 & Maria Rosaria Scarfi1
1Institute for Electromagnetic Sensing of the Environment, CNR, Naples, Italy, 80131
2Dept. of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy, 27100
3Dept. of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy, 27100
Keywords: In vitro, RF/Microwaves, Work in Progress
Presented by: Stefania Romeo

This study aims to investigate the capability of pre-exposure to 1950 MHz to protect from the amyloid beta (Aβ)-induced cytotoxicity in human neuroblastoma SH-SY5Y cells. Pre-exposure to radiofrequency (RF) reduced of about 30% the Aβ-induced DNA damage, while RF exposure alone did not affect DNA integrity, as assessed by the alkaline comet assay. Moreover, pre-exposure to RF increased microRNA 107, affecting the enzyme responsible for the Aβ plaques deposition BACE1 and decreased the expression of microRNAs related to long term potentiation and excito-toxicity (miRNA335 and miRNA26b). On the whole, RF seems to induce a protective effect against the damage induced by Aβ in human neuroblastoma cells.
5 ns electric pulses evoke Ca2+ responses in adrenal chromaffin cells that are longer in duration than those evoked by a physiological stimulus

Ruby Sukhraj1, Adam Shoaf2, Indira Chatterjee1, Normand Leblanc2 & Gale Craviso2

1Department of Electrical and Biomedical Engineering, University of Nevada, Reno, Reno, Nevada, USA, 89557
2Department of Pharmacology, University of Nevada, Reno, School of Medicine, Reno, Nevada, USA, 89557

Keywords: In vitro, Pulsed, Work in Progress

Presented by: Normand Leblanc

A 5 ns, 5 MV/m electric pulse (NEP) causes a rapid rise in intracellular Ca2+ in bovine adrenal chromaffin cells that takes much longer to return to pre-stimulus levels relative to Ca2+ responses evoked by nicotinic receptor stimulation. Although Ca2+ uptake into mitochondria is the main mechanism by which Ca2+ is rapidly removed from the cytoplasm to achieve baseline levels, we found that 5 or more NEPs are required to see any evidence of a change in mitochondrial membrane potential. Understanding the mechanism underlying the slow clearance of Ca2+ from the cytoplasm following NEP exposure is important since the ability of a chromaffin cell to rapidly clear the cytoplasm of Ca2+ by a nicotinic receptor agonist is also affected.

Nanosecond bipolar pulse cancellation below 10 ns — Looking for mechanisms in an expanding bioelectric puzzle

Esin B Sözer1 & P. Thomas Vernier1

1Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA, 23508

Keywords: In vitro, Pulsed, Work in Progress

Presented by: Thomas Vernier

We present studies of unipolar and bipolar electropermeabilization with 2 ns pulses. Some of our observations are consistent with previous reports of bipolar cancellation with longer pulses, but we report also new, unexpected effects of bipolar exposures and discuss mechanistic explanations.

An ELF magnetic field exposure system for real-time cell monitoring under controlled temperature conditions

György Thuroczy1, Stefania Romeo2 & Myrtill Simko3

1Department of Non-Ionising Radiation, National Public Health Institute, Budapest, Hungary
2Institute for Electromagnetic Sensing of the Environment (IREA), CNR, Naples, Italy
3SPI-SciProof International AB, Östersund, Sweden

Keywords: In vitro, ELF/LF, Work in Progress

Presented by: György Thuroczy

The aim of present work is to allow real-time microscopic monitoring of cellular and molecular changes during ELF magnetic field exposure at different temperatures. For this purpose an in vitro exposure system was designed to expose living cells to ELF magnetic fields under controlled temperature conditions.
Physical chemical analysis of tomato seeds (Solanum lycopersicum L.) under magnetic treatment

Javier Torres Osorio², Laura Maria Echeverry-Cardona¹, Elisabeth Restrepo-Parra¹, Nelson Ceballos Aguirre³ & Diana Carolina Galvez-Coy⁴

¹Departamento de Física y Química, Universidad Nacional de Colombia, Manizales, Colombia, 170002
²Departamento de Física, Universidad de Caldas, Manizales, Colombia, 170002
³Department of Agricultural Production, University of Caldas, Manizales, Colombia, 170002
⁴Tecnoacademia, Servicio Nacional de Aprendizaje SENA, Manizales, Colombia, 170002

Keywords: In vitro, Static, Completed (unpublished)

Presented by: Javier Torres Osorio

Physical chemical analysis of magnetic treatment tomato seeds that exhibited reduction in the mean germination time (MGT) was carried out for knowing the mechanisms that generate biophysical and biochemical modifications of the seeds because the magnetic field. The experiment was performed using a set of dipolar toroidal magnets, 8 doses of stimulation and a control for germination tests. The seeds with lower MGT were chosen. The chemical and the surface morphology characterization was performed. Seeds with lower MGT showed an increase of functional groups of lipid molecules, increase in the free water for reactions and expressions of potassium ions of the seed coat, that can be related to the increment in the membrane transport.

PB-112 [14:30]

Effects of microwave radiation on distribution of dendritic spines and SNK-SPAR pathway in primary hippocampal neurons

Lifeng Wang¹, Weijia Zhi¹, Haijuan Li¹ & Xiangjun Hu¹

¹Beijing Institute of Radiation Medicine, Beijing, China, 100850

Keywords: In vitro, RF/Microwaves, Completed (unpublished)

Presented by: Lifeng Wang

In the study, we found that 30mW/cm² microwave radiation could result in the density of dendritic spines and percentage of mature spines decreased in cultured primary hippocampal neurons; the increased SNK which led to the decrease of SPAR and PSD-95; low expression of Calcineurin which induced the decrease of CREB, the increase and nuclear translocation of p-CREB, then lifted the transcription level of SNK; the phosphorylated modification site in GKBD, which is the specific binding structure domain with PSD-95 of SPAR, transformed from ser-1567 and ser-1472 to ser-1603, and the interaction of SPAR and MAP2. It might lead to obstacle in spine maturation and debilitate synaptic connections.

PB-114 [14:30]

STUDENT PAPER

Effects of RF-EMF on APP-processing and cell death in mouse hippocampus cell line

Kyeonghee Yoon¹, Sojeong Choi¹, Nam Kim², Hyung Do Choi³, Hae June Lee⁴ & Yun-Sil Lee¹

¹College of Pharmacy & Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Korea
²School of Electrical and Computer Engineering, Chungbuk National University, Chungju, Korea
³Department of EMF Research Team, Radio and Broadcasting Technology Laboratory, ETRI, Seoul, Korea, 139-706
⁴Division of Basic Radiation Bioscience, Korea Institute of Radiological and Medical Sciences, Seoul, Korea, 01693

Keywords: In vitro, RF/Microwaves, Work in Progress

Presented by: Kyeonghee Yoon

In vitro experiments were performed after exposure of LTE RF-EMF (1745 GHz) because currently, the spread of LTE mobile communication network has increased. The LTE type RF-EMF was exposed to the cells for 24 hours at an intensity of 8 W/kg, which is the maximum intensity of our exposure system and Amyloid precursor protein (APP) processing and cell death effects were
examined. RF-EMF exposure showed no significant changes of ADAM10 and BACE1 as well as expression of CTFβ and CTFα. RF-EMF, no significant cell death was induced. Even though more detailed experiments is needed, unlike to IR, exposure of 8 W/kg LTE type RF-EMF for 24 hours did not affect APP processing and cell death in HT22 hippocampus cells.

PB-116 [14:30]

Effect of chronic RF-EMF exposure on aging-induced oxidative stress and neuroinflammation in C57BL/6 mice
Ye Ji Jeong¹, Hyung-Do Choi², Jeong-Ki Pack³, Nam Kim⁴, Yun-Sil Lee⁵ & Hae-June Lee¹
¹Division of Basic Radiation Bioscience, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
²Department of EMF Research Team, ETRI, Daejeon, Korea
³Department of Radio Sciences and Engineering, Chungnam National University, Daejeon, Korea
⁴School of Electrical and Computer Engineering, Chungbuk National University, Cheongju, Korea
⁵Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Korea

Keywords: In vivo, RF/Microwaves, Completed (unpublished)
Presented by: Hae-June Lee

In this study, we determine whether chronic RF-EMF exposure affect oxidative stress and inflammatory response of the brain in aging mice. The middle aged C57BL/6 mice (14 months old) were exposed to 1,950 MHz electromagnetic fields for 8 months (SAR 5W/kg, 2 h/day, 5 days/week). No changes were observed in the protein levels of DNA damage, apoptosis, GFAP, Iba-1 and heat shock proteins by long-term RF-EMF exposure.

PB-118 [14:30]

STUDENT PAPER

Magnetic field effects on H2O2 and possible biological implications including cancer
Sahithi Kandala1, Rodolfo Bruzon1, Hakki Gurhan1 & Frank Barnes1
1Electrical, Computer and Energy Engineering, University of Colorado, Boulder, Colorado, USA, 80309

Keywords: In vitro, Static, Work in Progress
Presented by: Sahithi Kandala

The links between Reactive oxygen species, Electromagnetic Fields and Biological Implications are explored. Experimental data is used as background to show the changes that are observed due to static magnetic fields on fibrosarcoma cells.

PB-120 [14:30]

Generation of a syngeneic orthotopic graft murine model of peritoneal carcinomatosis for studying in vivo nsPEF anticancerous effects
Abdelkader Taibi1, Marie-Laure Perrin2, Lynn Carr2, Catherine Yardin1, Sylvaine Durand-Fontanier1 & Sylvia M. Bardet2
1CNRS, CHU Limoges, XLIM, UMR 7252, University of limoges, Limoges, France, F-87000
2CNRS, XLIM, UMR 7252, Limoges, France, F-87000

Keywords: In vivo, Pulsed, Work in Progress
Presented by: Sylvia M. Bardet

Colorectal cancer (CRC), a common cancer with poor prognosis, affects the peritoneum by metastasis, leading to an incurable peritoneal carcinomatosis (CPc). High-intensity nanosecond pulsed electric fields (nsPEF) have emerged as a promising tool for tumor ablation. We have developed 4 models of CPc suitable for in vivo nsPEF studies, by syngeneicintravenous, subcutaneous, intraperitoneal or laparotomygraft of CT-26 cells in immunocompetent mice, and compared growth by bioluminescence. Tumoral tissue was observed by multiphoton microscopy. In vitro CT-26 cells were analyzed for their sensitivity to nsPEF (survival, mitochondrial potential, permeabilization). Our CPc models will enable robust experiments for future in vivo nsPEF analysis.
Effect of radiofrequency electromagnetic fields on in vivo C6 brain tumors in Wistar rats
Anne-Sophie Villegier & Nihal Ouadah
1Experimental toxicology, INERIS, Verneuil-en-Halatte, France, 60550
Keywords: In vivo, RF/Microwaves, Completed (unpublished)
Presented by: Anne-Sophie Villegier

Previous literature suggested that brain cancer patients with heavy cell phone use showed reduced survival. Here we aimed to test survival and tumor aggressiveness in the C6 cells glioblastoma model in Wistar rats subjected to controlled brain averaged specific absorption rate (BASAR) induced by radiofrequency electromagnetic field (RF-EMF) exposures. For the first time, BASAR-dependent effects were reported in vivo by the reduction of apoptosis and by the reduction of inflammation in the tumor micro-environment. In accordance with the literature, our data did not suggest any impact on survival or tumor volume. Further replication studies are needed to confirm these observations.

Effects of radiofrequency fields on RAS and ERK kinases activities in live cells using the real-time Bioluminescence Resonance Energy Transfer technique (BRET)
Emmanuelle Poque-Haro, Delia Arnaud-Cormos, Hermanus Ruigrok, Florence Poulletier De Gannes, Annabelle Hurtier, Rémy Renom, Isabelle Lagroye, Bernard Veyret, Philippe Leveque & Yann Percherancier
1Bioelectronic group, Bordeaux University, Talence, France, 33400
2Bioelectromagnetics team, Limoges University, Limoges, France, 87060
Keywords: Mechanistic/Theoretical, Static, Completed (unpublished)
Presented by: Isabelle Lagroye

Using ERK and RAS molecular probes based on the Bioluminescence Resonance Energy Transfer technique, we assessed the effect of 1800 MHz exposure (CW and GSM signals) at two different levels: 6W/kg and 1.5 W/Kg, on ERK and RAS activities in HuH7 cells.

Alterations in photosynthetic system key factors after exposure of Microcystis aeruginosa to 1.8GHz electromagnetic field
Chao Tang, Ziyan Zhang, Hui Yu & Xiaomei Huang
1Key Laboratory of Urban Environment and Health, The Institute of Urban Environment (IUE), Chinese Academy of Sciences (CAS), Xiamen, China, 361021
Keywords: Mechanistic/Theoretical, RF/Microwaves, Work in Progress
Presented by: Chao Tang

Electromagnetic radiation played a crucial role in the phycoerythrin content regulation. M. aeruginosa may alleviate the electromagnetic radiation damage of photosynthetic system by adjusting the content of phycobiliprotein.
PB-132 [14:30]

Study on the effects of oxidative stress of Microcystis aeruginosa under the exposure of electromagnetic radiation
Hui Yu¹, Chao Tang¹, Xiaomei Huang¹ & Chuanjun Yang¹
¹Key Laboratory of Urban Environment and Health, The Institute of Urban Environment (IUE), Chinese Academy of Sciences (CAS), Xiamen, China, 361021
Keywords: Mechanistic/Theoretical, RF/Microwaves, Completed (published)
Presented by: Hui Yu

The effect of the activities of Antioxidant enzyme systems (SOD, MDA) of Microcystis aeruginosa were studied under the exposure of three kinds of typical electromagnetic radiations. The results showed that oxidative stress of M.aeruginosa could be induced under the exposure of electromagnetic radiation.

PB-134 [14:30]

Wide-band evaluation of EMF emitted by portable computer devices
Krzysztof Gryz¹, Jolanta Karpowicz¹ & Patryk Zradziński¹
¹Laboratory of Electromagnetic Hazards, Central Institute for Labour Protection - National Research Institute (CIOP, Warszawa, Poland, 00-701
Keywords: Occupational, All Frequencies, Work in Progress
Presented by: Krzysztof Gryz

The aim is identifying and evaluating the electromagnetic field (EMF) emitted by portable computer devices (e.g. laptops, tablets). The electronic components of portable devices (external AC/DC power supply, internal graphic card and processor interfaces, wireless communication modules etc.) are wide-band sources of EMF, currently from static field up to microwave of approximately 6 GHz frequency. The broadband and selective measurement of EMF near laptops housing were performed. Obtained results shown that dominant components of EMF exposures near portable computers are: ELF magnetic field emitted by AC/DC adapters and RF electric field emitted by WiFi interfaces (2G or 5G).

PB-136 [14:30]

STUDENT PAPER
Design of a triple band monopole antenna using parasitic elements with SAR reduction for WLAN and WiMAX Applications
Hanul Bong¹, Niamat Hussain¹, Min-Joo Jeong¹, Ji Woong Park¹, Seungwoo Lee² & Nam Kim¹
¹Chungbuk National University, Cheongju, Korea, 28644
²Korea Electric Power Corporation, Naju, Korea, 58217
Keywords: Public Health Policy, RF/Microwaves, Work in Progress
Presented by: Hanul Bong

A triple band antenna consists of a dipole, a monopole and parasitic elements is presented. The aimed frequency band is WLAN (2.4/5.8 GHz) and WiMAX (3.5 GHz) applications. The parasitic elements around feed line is introduced for improving the performance of the antenna. The antenna shows acceptable radiation pattern along with - 10 dB return loss at all three bands. Moreover, the proposed antenna with reflector got reduction of 85.12 %, 50.06 % and 36.87 % in 1g SAR value at 2.4 GHz, 3.5 Ghz and 5.8GHz, respectively when compared with international standard value.

PB-138 [14:30]

Trends in scientific research on mobile communications: Temporal and geospatial analysis based on data of the EMF-Portal
Dagmar Dechent¹, Anne-Kathrin Petri¹, Lambert Bodewein¹, Tanja Emonds¹, David Graefrath¹, Thomas Kraus¹ & Sarah Driessen¹
Research Center for Bioelectromagnetic Interaction (femt), University Hospital RWTH Aachen, Aachen, Germany, 52074

Keywords: Public Health Policy, RF/Microwaves, Work in Progress

Presented by: Dagmar Dechent

The EMF-Portal (www.emf-portal.org) summarizes systematically scientific research data on the effects of electromagnetic fields (EMF) and provides all information free of charge in English, German and Japanese. The core of the EMF-Portal is an extensive literature database with an inventory of about 26,000 publications and 6,100 summaries of individual scientific studies. Using the database of the EMF-Portal we analyzed the global scientific efforts in publications on medical/biological effects of exposure to mobile phone related radiofrequency EMF. We present temporal trends in number of publications and analyzed the mostly investigated research topics, authors with most publications, funding and origin of the publications.

PB-140 [14:30]

Scientific knowledge changes people's RF-EMF risk perception
Alberto Nájera¹ & Judith Maciá¹
¹Medical Sciences Department, University of Castilla-La Mancha, Albacete, Spain

Keywords: Public Health Policy, Static, Completed (published)

Presented by: Alberto Nájera

We analyzed if providing scientific information about personal exposure to RF-EMF and possible health effects prior to the placement of a new mobile base station, could minimize citizen mobilizations.

PB-142 [14:30]

New technologies of the smart cities and public exposure of extremely low frequency electromagnetic fields
Rauno Pääkkönen¹ & Leena Korpinen²
¹TMI Rauno Pääkkönen , Tampere, Finland
²Clinical Physiology and Neurophysiology Unit , The North Karelia Central Hospital , Joensuu, Finland

Keywords: Public Health Policy, ELF/LF, Completed (unpublished)

Presented by: Leena Korpinen

New technology brings more and more extremely low frequency electromagnetic fields around us. These fields can be more complex than before; therefore, exposure to these fields must be evaluated. We have performed this work for example with smart electric meters, electric cars, or work related electromagnetic exposures. The fields have generally been less than 10% of the recommendation values.

PB-148 [14:30]

WITHDRAWN
The ELES Company ensures the safe, reliable and uninterrupted transmission of electricity. ELES is the guardian of Slovenia’s electric power transmission system, which is closely connected to the transmission networks of neighbouring countries and integrated into the European energy system. Our responsibility is that electricity is always at hand, ensuring the consumers can meet their needs and wishes at any time. ELES is the operator of the electric power transmission network of the Republic of Slovenia. With a professional approach, know-how and advanced technology, ELES has been providing safe, reliable and uninterrupted electric power transmission throughout Slovenia and across the borders for 90 years. Thus, the company connects people and ensures quality of life. ELES endeavours to strategically, responsibly and sustainably plan, construct and maintain Slovenia’s high-voltage transmission network in three voltage levels: 400 kV, 220 kV and a part of 110 kV.

The Electric Power Research Institute (EPRI) conducts research, development, and demonstration projects for the benefit of the public in the United States and internationally. As an independent, nonprofit organization for public interest energy and environmental research, we focus on electricity generation, delivery, and use in collaboration with the electricity sector, its stakeholders and others to enhance the quality of life by making electric power safe, reliable, affordable, and environmentally responsible.
The MWF is an international association of companies with an interest in mobile and wireless communications including the evolution to 5G and the Internet of Things.

We are a development-stage medical device company using a novel and proprietary platform technology called Nano-Pulse Stimulation or NPS. NPS is a local and drug-free technology that utilizes ultra-short, nanosecond pulsed electric fields to induce cell signaling and the activation of cellular pathways in tissue. One of the more promising applications of NPS is the treatment of solid tumors, where pre-clinical data developed by Pulse Biosciences and others have shown that NPS provides effective local tumor control and initiates an adaptive immune response with a vaccine-like effect by inducing immunogenic apoptosis of the treated cells. We believe we will establish NPS as a new treatment modality across a variety of applications, including both veterinary and human oncology, dermatology, aesthetics and other minimally invasive applications where current ablation modalities do not provide the benefits of NPS. We are developing a proprietary system for the delivery of NPS treatments, currently identified as the “PulseTx.” The PulseTx system delivers NPS pulses through its proprietary tunable pulse generator and its suite of electrodes. The PulseTx system pulses are applied directly to tissue through electrodes, creating transient nanometer pores in cell and organelle membranes. We believe we are the only medical device company with the intellectual property, technology, and know-how to be able to produce this natural cell death using NPS to initiate cell signaling that induces the targeted adaptive immune response.
Orthofix International is a diversified, global medical device company focused on improving patients' lives by providing superior reconstructive and regenerative orthopedic and spine solutions to physicians worldwide. Headquartered in Lewisville, TX, the company has four strategic business units that include BioStim, Biologics, Extremity Fixation and Spine Fixation. Our products are distributed in more than 50 countries around the world via Orthofix sales representatives, stocking distributors and subsidiaries. Founded in Verona, Italy in 1980, Orthofix has approximately 900 employees around the world who are dedicated to the development, manufacturing and distribution of orthopedic and spine products and regenerative tissue forms. Many of our innovative product offerings were cultivated through affiliations with surgeons and premiere health care organizations. Orthofix is proud to collaborate on research and development activities with leading clinical organizations such as the Musculoskeletal Transplant Foundation (MTF), the Orthopedic Research and Education Foundation and the Texas Scottish Rite Hospital for Children.
A1 Slovenija is the leading private provider of integrated communication services in Slovenia. More than 500 employees are committed to creating solutions that enrich life in the digital age to more than 700,000 users. A1 Slovenia develops meaningful communication solutions that fulfil current and emerging needs of users so they will experience work play, creating, and sharing in a more connected way. A1 Slovenija is in a 100-percent ownership of Telekom Austria Group (ATX:TKA) and is an important part of the leading digital solutions and communications provider in Central and Eastern Europe with more than 24 million users in 8 countries, more than 4 billion EUR income and more than 17,500 employees. The Group is the European unit of América Móvil, the third largest provider of wireless services in the world. A1 Slovenija began offering its services in March 1999 as the first privately owned mobile operator in Slovenia. It has been retaining a position of a pioneer in the mobile communication field and constantly strengthening its position in the integrated communications market ever since. A1 Slovenija is using advanced technology to enable the users to shape the experience they want to live.

The GSMA represents the interests of mobile operators worldwide, uniting nearly 800 operators with almost 300 companies in the broader mobile ecosystem, including handset and device makers, software companies, equipment providers and internet companies, as well as organisations in adjacent industry sectors. The GSMA also produces industry-leading events such as Mobile World Congress, Mobile World Congress Shanghai, Mobile World Congress Americas and the Mobile 360 Series of conferences. For more information on GSMA activities related to electromagnetic fields please visit http://www.gsma.com/publicpolicy/consumer-affairs/emf-and-health.
Telstra is Australia’s leading telecommunications and technology company, offering a full range of communications services and competing in all telecommunications markets. In Australia Telstra provide 17.6 million retail mobile services, 5.1 million retail fixed voice services and 3.5 million retail fixed broadband services.
Narda is a leading provider of measuring equipment for the EMF Safety, RF Test & Measurement and EMC sectors. With its standards-compliant EMF measurement solutions (for electrical and magnetic fields) from 0 Hz to 90 GHz, it covers almost all mobile radio services - including 5G. The EMF Safety product spectrum includes wideband and frequency selective measuring instruments, full coverage wide area monitors, and personal safety monitors that are worn on the person. The RF Test & Measurement range includes analyzers and devices for measuring and identifying RF sources. The PMM brand of EMC instruments consists of devices for measuring the electromagnetic compatibility of equipment. Servicing and calibration, together with training programs complete the range of services provided. The company management system is ISO 9001:2015 certified, and it operates a DIN EN ISO/IEC 17025:2005 accredited calibration laboratory. Narda has development and production facilities at three locations: Hauppauge, Long Island/USA, Pfullingen/Germany and Cisano/Italy. It also has its own representative in Beijing/China. A global network of Sales Partners ensures close customer contact. Narda is part of L3 Technologies, New York.

Regional authorised distributor

WiLLTRON Technologies GmbH
Am Kanal 8-10
2352 Gumpoldskirchen
j.saustingl@willtron.at
www.willtron.at
Since 1980, the year the company was founded, IGEA has been working to provide innovative and effective therapies to patients. IGEA’s constant commitment and knowledge, built on solid scientific foundations, led to the birth of Clinical Biophysics, a branch of medicine based on the use of non-ionising physical energy. Over the years, scientific research and intellectual curiosity have always distinguished the work of IGEA enabling the company to develop new and efficacious orthopaedic medical devices to promote reparative osteogenesis and joint protection. In 2000, with the aim of offering the patient an effective and safe therapy that is easy to use, with minimal side effects, IGEA decided to take on a new challenge: the development of oncological biophysics for the treatment of solid tumours. The significant progress made in science, technology and continuous identification of innovative and efficacious treatment solutions for the improvement of patients’ quality of life, have made IGEA the leading company in the field of Clinical Biophysics.

It is ZonMw’s goal to ensure that healthy people stay that way for as long as possible, that ill people recover as quickly and completely as possible and that people who require care and nursing receive the highest standard of services. To achieve this, we need to focus on prevention: on stopping people from becoming ill. And we need good health care for people who nevertheless fall ill. The question ZonMw faces is how to improve disease prevention and health care. One thing is clear: you need a lot of knowledge, and therefore a lot of research. And it is important that people actually use that knowledge. With this in mind, ZonMw funds and promotes research, development and implementation.
Author Index

Abramson, Michael: S14-3, S05-3
Abundis-Gutierrez, Emanuel: S13-3
Achermann, Peter: S16-3
Addison, Darren: S11-3
Aerts, Sam: S14-6, S14-4
Agneessens, Sam: PB-44
Ahlbom, Anders: S05-5
Ahn, Hyungsang: PA-47
Ahn, Young Hwan: PA-111
Aimoto, Atsuko: PB-48, FB-3
Akahane, Manabu: S04-2
Akutagawa, Masatake: PA-99, FA-10
Al Hajj, Maarouf: S11-4
Alekseev, Stanislav: PA-91, FA-9
Alon, Leor: PW1-7
Aloui, Saifeddine: S14-5
Alpuente-Hermosilla, Jesus: PA-45
Alteköster, Carsten: S04-3
Aminzadeh, Reza: S14-2, PB-44
Amoon, Aryana: S05-6, S05-5
An, Ho Sung: PB-52
An, Junoh: PA-47
Anand, Snjezana: S12-1
Andre, Franck: PA-73, FA-7
Apollonio, Francesca: S15-5, PB-56, PA-119, W3-5, W3-3, PB-72, W3-7, PA-63
Arah, Onyebuchi: S05-6
Ardelean, Ioan: PA-49
Ardelean, Ioan I.: PA-49
Arnaud-Cormos, Delia: PB-128, S08-1
Atanasov, Nikolai: PA-117
Atanasova, Gabriela: PA-117
Attal-Trétout, Brigitte: W3-7
Augustsson, Torsten: S05-2
Auvín, Anssi: P5-1
Azan, Antoine: W3-8, W3-6
Azimov, Utkam: S13-1
Bachmann, Philipp: PA-55
Bae, Sanghyuk: PB-78
Bailey, William: S16-4
Bajla, Ivan: PA-125
Baker, Cadence: S01-4
Bakos, Jozsef: PA-89
Balzano, Quirino: PB-56, S13-2, PB-36
Banerjee, Utkam: S09-4, S09-3, S15-1
Barker, Cadence: S01-4
Benke, Kurt: S05-3
Berg, Pascal: PA-75, FA-8
Bereta, Martin: PA-125
Besnier, Philippe: S14-2
Bhatnagar, Megha: S05-5
Bhatt, Chhavi: S14-3
Bienkowski, Pawel: PB-92, PA-1, PB-34, PA-53
Birks, Laura: S11-1
Bishop, Jonh: PA-61
Bluestone, Chad: T3-1
Bodemann, Ralf: S16-4
Bodewein, Lambert: PB-138, PA-131
Bogdanov, Todor: PA-117
Boillée, Severine: S05-1
Bollati, Valentina: S05-2
Bonato, Marta: PB-82
Bonelli-Salvadori, Aurélie: PA-113
Bong, Hanul: S13-1, PB-136, PA-133, FB-13
Bordarie, Jimmy: S10-3
Bories, Serge: S14-5
Borck, Christian: S11-2, S14-1
Botha, Shirmone: FA-7, PA-73
Bouisset, Nicolas: S10-2, PB-84, FB-6
Boulard, Catherine: PA-83
Bouldi, Mérimé: S05-4
Boutillier, Laurette: PA-113
Bray, Issy: S05-5
Bredel, Erik: PB-74
Breda, Cestnik: PB-12
Breton, Marie: W3-6
Brulais, Sébastien: S14-5
Brusen, Rodolfo: S06-1, FB-11, PB-118
Brzozek, Christopher: S14-3, S05-3
Bunch, Katherine: S05-5
Burdio, José-Miguel: FA-7, PA-73
Burim, Eunae: PB-78
Bushberg, Jerold: S16-4
Butera, Alessio: S03-3
Bömmels, Ingo: S16-5
Cadosso, Ruggero: S15-5, PA-119
Cala, Pawel: PB-92, PA-1
Calderon, Carolina: S11-3
Camera, Francesca: S15-5
Campi, Tommaso: PA-33
Canova, Aldo: S15-2
Caorsi, Salvatore: PB-100
Capone, Fioravante: S15-5
Caprio, Emilio: S11-6
Capstick, Myles: PA-113
Cardis, Elisabeth: S11-1, PB-44
Carr, Lynn: PB-94, PB-120
Carvalho, Eduardo: S13-2
Carvalho, Andres: PA-75, FA-8
Casciati, Arianna: PA-61
Casciola, Maura: S12-2, W3-3, PA-63
Cassara, Antonino Mario: S09-4, S09-3, S15-1
Castellani, Federica: S12-4
<table>
<thead>
<tr>
<th>Name</th>
<th>Codes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kheifets, Leeka</td>
<td>S05-6, S11-1, S05-5, PB-80</td>
</tr>
<tr>
<td>Kim, DongGeon</td>
<td>PA-19</td>
</tr>
<tr>
<td>Kim, Geojung</td>
<td>PB-46</td>
</tr>
<tr>
<td>Kim, Hakrim</td>
<td>S08-2</td>
</tr>
<tr>
<td>Kim, Hong Lae</td>
<td>PB-52, PA-137</td>
</tr>
<tr>
<td>Kim, Hye Sun</td>
<td>PA-111</td>
</tr>
<tr>
<td>Kim, Hyung-Gun</td>
<td>S08-2, PA-9</td>
</tr>
<tr>
<td>Kim, Ju-Hwan</td>
<td>S08-2</td>
</tr>
<tr>
<td>Kim, Kyuhyeon</td>
<td>PB-46</td>
</tr>
<tr>
<td>Kim, Yangho</td>
<td>PB-78</td>
</tr>
<tr>
<td>Kinouchi, Yohsuke</td>
<td>PA-99, FA-10</td>
</tr>
<tr>
<td>Kismali, Gorkem</td>
<td>PA-93</td>
</tr>
<tr>
<td>Klein, Marie-Muguet</td>
<td>PA-113</td>
</tr>
<tr>
<td>Koch, Michael</td>
<td>PB-86, PB-98</td>
</tr>
<tr>
<td>Kodera, Sachiko</td>
<td>S02-1</td>
</tr>
<tr>
<td>Koerber, Rainer</td>
<td>S09-3</td>
</tr>
<tr>
<td>Kojima, Masami</td>
<td>PW1-5, S15-6</td>
</tr>
<tr>
<td>Kolosnjaj-Tabi, Jelena</td>
<td>S03-6, PA-95</td>
</tr>
<tr>
<td>Kondo, Tsukasa</td>
<td>S15-3</td>
</tr>
<tr>
<td>Kopacz, Thomas</td>
<td>S11-2, S14-1</td>
</tr>
<tr>
<td>Korpinnen, Leena</td>
<td>PB-142</td>
</tr>
<tr>
<td>Kos, Bor</td>
<td>S02-4, PB-74</td>
</tr>
<tr>
<td>Kotnik, Tadej</td>
<td>PA-138, PA-131, PA-41, FA-5</td>
</tr>
<tr>
<td>Kreis, Christian</td>
<td>S05-5</td>
</tr>
<tr>
<td>Kromhout, Hans</td>
<td>S04-1</td>
</tr>
<tr>
<td>Kubinyi, Györgyi</td>
<td>PA-89</td>
</tr>
<tr>
<td>Kuehn, Sven</td>
<td>S04-4, S11-5</td>
</tr>
<tr>
<td>Kuhn, Jens</td>
<td>S13-4</td>
</tr>
<tr>
<td>Kulbacka, Julita</td>
<td>PB-76</td>
</tr>
<tr>
<td>Kundi, Michael</td>
<td>W1-4</td>
</tr>
<tr>
<td>Kurosaki, Shota</td>
<td>PB-48, FB-3</td>
</tr>
<tr>
<td>Kuster, Niels</td>
<td>S09-4, S16-6, PA-113, SO4-4, S13-2, PW1-10, S15-1, S04-5, S11-5, S09-3, SO4-6</td>
</tr>
<tr>
<td>Kwon, Ho-Jang</td>
<td>PB-78</td>
</tr>
<tr>
<td>Laakso, Ilkka</td>
<td>PB-20, S15-3</td>
</tr>
<tr>
<td>Lagroye, Isabelle</td>
<td>PB-128, S03-5, PA-81, W2-2, S08-4</td>
</tr>
<tr>
<td>Lajevardipour, Alineza</td>
<td>SO7-4, PA-13</td>
</tr>
<tr>
<td>Lambrozo, Jacques</td>
<td>FB-6, PB-84, S01-4, S10-2</td>
</tr>
<tr>
<td>Lameth, Julie</td>
<td>S01-8</td>
</tr>
<tr>
<td>Langus, Janez</td>
<td>PB-74</td>
</tr>
<tr>
<td>Last, David</td>
<td>S07-2</td>
</tr>
<tr>
<td>Lastauskienë, Eglë</td>
<td>S12-5</td>
</tr>
<tr>
<td>Lau, Edmund</td>
<td>PB-80</td>
</tr>
<tr>
<td>Le Brusquet, Laurent</td>
<td>PB-82</td>
</tr>
<tr>
<td>Le Dréan, Yves</td>
<td>S08-4, FA-9, PA-91</td>
</tr>
<tr>
<td>Le Page, Yann</td>
<td>PA-91, FA-9</td>
</tr>
<tr>
<td>Le Roux, Christaan</td>
<td>PB-64</td>
</tr>
<tr>
<td>Leblanc, Normand</td>
<td>PB-104, PW2-8, S12-6</td>
</tr>
<tr>
<td>Ledent, Maryse</td>
<td>S10-3, PA-83</td>
</tr>
<tr>
<td>Lee, Ae-kyoung</td>
<td>PB-78, PB-18</td>
</tr>
<tr>
<td>Lee, Byeongyoon</td>
<td>PB-50</td>
</tr>
<tr>
<td>Lee, Hae June</td>
<td>PB-10, PB-114</td>
</tr>
<tr>
<td>Lee, Hae-June</td>
<td>PA-116, FA-11, PA-109</td>
</tr>
<tr>
<td>Lee, Haeng-Seon</td>
<td>PA-15</td>
</tr>
<tr>
<td>Lee, Hye-Ryoung</td>
<td>S08-2</td>
</tr>
<tr>
<td>Lee, Jaesung</td>
<td>PA-47</td>
</tr>
<tr>
<td>Lee, Jin-Koo</td>
<td>S08-2</td>
</tr>
<tr>
<td>Lee, Seungwoo</td>
<td>PB-52, PA-137, FB-13, PB-136</td>
</tr>
<tr>
<td>Lee, Yong-Han</td>
<td>PB-78</td>
</tr>
<tr>
<td>Lee, Young Seung</td>
<td>PA-15</td>
</tr>
<tr>
<td>Lee, Yun Jin</td>
<td>PA-135</td>
</tr>
<tr>
<td>Lee, Yun-Sil</td>
<td>PA-109, PA-85, FA-11, PB-114, FB-10, PB-116</td>
</tr>
<tr>
<td>Legros, Alexandre</td>
<td>S10-2, S01-5, S01-6, S16-4, FB-6, S01-4, PB-84</td>
</tr>
<tr>
<td>Lehtinen, Tuukka</td>
<td>PB-20</td>
</tr>
<tr>
<td>Leveque, Philippe</td>
<td>PB-128, S08-1</td>
</tr>
<tr>
<td>Lewis, Noëlle</td>
<td>PA-81</td>
</tr>
<tr>
<td>Li, Congsheng</td>
<td>S02-3</td>
</tr>
<tr>
<td>Li, De-Kun</td>
<td>PA-69</td>
</tr>
<tr>
<td>Li, Hailjuan</td>
<td>PB-112, PA-129</td>
</tr>
<tr>
<td>Li, Kun</td>
<td>PB-22</td>
</tr>
<tr>
<td>Li, Wenchao</td>
<td>PA-123</td>
</tr>
<tr>
<td>Libal, Urszula</td>
<td>PA-1</td>
</tr>
<tr>
<td>Liberti, Micaela</td>
<td>PA-63, PB-56, W3-7, S15-5, W3-5, W3-3, PA-119, PB-72</td>
</tr>
<tr>
<td>Liorni, Ilaria</td>
<td>S04-4</td>
</tr>
<tr>
<td>Liu, Chuan</td>
<td>PA-105, S03-4</td>
</tr>
<tr>
<td>Liu, Zhen</td>
<td>PA-67</td>
</tr>
<tr>
<td>Lloyd, Bryn</td>
<td>S04-6, S15-1, S09-4</td>
</tr>
<tr>
<td>Lloyd, David</td>
<td>S06-4</td>
</tr>
<tr>
<td>Lopez, Borja</td>
<td>PA-73, FA-7</td>
</tr>
<tr>
<td>Lopresto, Vanni</td>
<td>S03-3</td>
</tr>
<tr>
<td>Loughran, Sarah</td>
<td>S01-5, S10-1, S01-1, S01-2, S16-1</td>
</tr>
<tr>
<td>Lucia, Óscar</td>
<td>PA-73, FA-7</td>
</tr>
<tr>
<td>Luis, Pablo</td>
<td>PA-45</td>
</tr>
<tr>
<td>Ma, Qin-Long</td>
<td>PA-105, S03-4</td>
</tr>
<tr>
<td>Maciá, Judith</td>
<td>PA-140</td>
</tr>
<tr>
<td>Madjid Ansari, Alineza</td>
<td>FB-13</td>
</tr>
<tr>
<td>Maestu, Ceferino</td>
<td>PB-8</td>
</tr>
<tr>
<td>Maeyatsu, Humio</td>
<td>S04-2</td>
</tr>
<tr>
<td>Magne, Isabelle</td>
<td>PB-82</td>
</tr>
<tr>
<td>Maiolino, Paola</td>
<td>S11-6</td>
</tr>
<tr>
<td>Maiz, Odei</td>
<td>S09-4</td>
</tr>
<tr>
<td>Makino, Kei</td>
<td>S03-1</td>
</tr>
<tr>
<td>Malagoli, Carlotta</td>
<td>S05-5</td>
</tr>
<tr>
<td>Maliat, Michel</td>
<td>S08-1</td>
</tr>
<tr>
<td>Mancuso, Mariateresa</td>
<td>PA-61, S03-3</td>
</tr>
<tr>
<td>Mardor, Yael</td>
<td>S07-2</td>
</tr>
<tr>
<td>Marino, Carmela</td>
<td>S03-2, S03-3</td>
</tr>
<tr>
<td>Markovskaja, Svetlana</td>
<td>S12-5</td>
</tr>
<tr>
<td>Marquant, Fabienne</td>
<td>S05-5</td>
</tr>
<tr>
<td>Marracino, Paolo</td>
<td>PA-119, W3-3, PB-72</td>
</tr>
<tr>
<td>Martano, Manuela</td>
<td>S11-6</td>
</tr>
<tr>
<td>Martens, Luc</td>
<td>S11-5, PA-11, PA-23, FA-3, S14-6, S14-2, S14-3, S14-4</td>
</tr>
<tr>
<td>Maslanyj, Myron</td>
<td>S11-3</td>
</tr>
<tr>
<td>Massa, Rita</td>
<td>S11-6</td>
</tr>
<tr>
<td>Masuchi, Ayumi</td>
<td>PA-77</td>
</tr>
</tbody>
</table>
Zheng, Chao: PA-67
Zheng, Feizhou: PA-59
Zheng, Shusen: PA-67
Zhi, Weijia: PB-112
Zhou, Zhou: PA-105, S03-4
Zhu, Siyi: S08-3

Ziegelberger, Gunde: S13-4
Zinkevičienė, Auksė: S12-5
Ziskin, Marvin: S16-4, PB-36
Zradziński, Patryk: PA-127, PB-28, PB-134
Zubrzak, Bartłomiej: PA-1